Programmer’s Guide

softbool u®

SOFTWARE CORPORATION

www. softbool.com

http://www.softbool.com/

Copyright 2001-2023 Softbool AB. All rights reserved. All Softbool products are trademarks or
registered trademarks of Softbool AB. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Chapter 1 AppliCation AEVEIOPMIENT ittt ettt e eeeeeeeeeeeeessseeessssseeeeeseesnseensnnnnnnne 17

WhO Should read thiS DOOKcoeuiiiiiii et e e e e aans 17
(B L= 1 110 L PR 17
BOOIWAIE OVEIVIEW .. .coeiiiiiiii ettt et e et e e e et e e e e e e e st e e st eesae e e st e et esaaeessneeesneeen 18
(1<) {1 a1 o) g I = w3 1= 0 AT 18
The Boolware Client Drary...........oooo 19
(D<) [T a T o) A I = TET=) VA=) ST 19
FaY o] o]l Tor= iTel g We [oaV =T (o] o 4 g TT o | OO PP PP P PP PPPPPPPPPPPPPPPPIRt 19
Step bY SIEP INtOAUCTION ... 19
R =] I PSP PPPPPRPPPPPPPRPN 20
Y (=T I PSR PPPPPIPPRPPPPRPN 21
Y (=] €I TSRO PPPPIPPRPPPPRPN 21
Y (=] €I PP PPPP PR PPPRPPPRPN 22
Y (=] I TSRO PPPPPIPRRPPPPRPN 22
Y (=] €I PSP PPPPPIPPRPPPPRPN 23
ST EoT] 0] 1T 24
SOfthool QUENY LANGUAGEo 24
Execute comMmMandS iN BOOIWATIEieeiiieii ittt e et et e et et e e e et e e e e e e ea e e eansennaen 25
e O] = = 0] O 25
FETCHCOORDINATES ...ttt et e e e e e e e et e e et e e et e e eaeeeanns 26
] O N @ 1 L 15 11| 27
FETCHPOLYGONSFOUND. ..ottt ettt e e e e e e e e e e et e et e e st e esaneesaneeennnns 28
FLOWINFO . ..ce ittt et et e et e e e e et e e et e e et e e e e e e et e e saneesaneesaneesansenannns 28
FLOWINFOPARAMETERSttt e e e et e e e e e e e e e e eeanas 29
GETAUTOTRUNC ...ttt e e e et e et e e et e e et e e et e e et e e san e e aaeeaaeeanneeenns 30
GETDUPRULESot e e e et e e e e e e e e e e e aneeanes 30
GETENCODING ...ttt e e et e e e e e e e e e et e e e s e e e s eaeeneeaneeanen 31
LT I = I O] 1 N 31
LT I 1S T 1O] /2N 31
LT I NV 0 = N N 31
GETMAXEXECUTIONTIMEottt e e e e e e e e e e e e e aneenneen 31
GETQUERYLIMVALUE ...ttt e e e e e e e e et e e e e e e e e e eaneeanns 31
GET SESSIONTIMEOUT .ottt e et e e e et e e e et st e e e e sa e anseanseneeaneeanses 31
(T ST = ST =7 2 U4 - N 32
(TS S I L 171 1 TN 32
L LI RS I O 15T I (0] 32
A = 32
10 L 38
PERFCOUNTERS ..o e e e e et e e e e e e et e e e e ea s e e e e e eaeeanseanseneens 38
AN AN | 38
LR A AN | S I =1 1Y/ S 3 39
R AN 2 = I 40
SAVEQUE RY o e e e e a e et e et aaa e aana, 40
L YT @ 10t 2 41
D I I 10t S 41
YN 2 1 O I N 42
R A VAT {1 43
[I g] O | 43
YN S O = 7 N I - N 44
[I ST O N 1 45
SETAUTOTRUNC ..o e et et e et e e et et eaa e e e et eaa e e s s ea s anseassnesanseanses 45
SETENCODING. ... ettt et e e et e e et et saa e e s s st s an e e s s saesanseanssnesanseanses 46
Sl 1 1S3 1 1 2N 46
L I N0 0 0 I 46
SETMAXEXECUTIONTIMEOUT ...cniiiiie et e e e et e e et et et e et s s s s s eanssaeeanseanses 46
SETQUERYLIMVALUEottt e e et e e e e e e e e e e et e e e e et e e e eaaneeeenan 46
SETQUERYOPTIONS ...t e e e e et e e e e et e e e e et e e e et e e e e et e e e eaaaeeeenan 47
GETQUERY OPTIONS ... e e e et e e e e e e e e et e e e et e e eaaan e e e aaaneeeenan 47
SE T SESSIONTIMEOUT .ottt et e e e et e e et et eaa e et s sa s s s eansaneeanseanses 48
SE T SET SEARCH ... e et e e et et e e et e et et e e e s et e et s et s e eaneeanes 48

REVIEW SET ..ttt e et e e e e et e e et e e e e e e e e snab e e e eeeeees 48

DELETESET ...etttitttie ettt ettt ettt et e e oo 4o a e bbbttt e e a2 e e e naa bt et e e e e e e e e e annnbbeeeeaaeeeeannneneeas 49
SE T ST RICT ASIS ..ot e e e e e e ettt e e e e e e e abbb et e e e e e e e e e annnbeneeaaaeeas 49
S AN I IS (O T PP RPN 49
Chapter 2 API AESCIIPTONeeiieiiiiiiiieiteeitete ettt ettt et eee et s s ee e s e e s e st s esssssssssseesseseessssensnennnnne 52
Detailed AP AESCHIPLIONuuiiiiiiiiiiiiiiiiii s 52
XML elements for SESSION SEINGS.....cooii i 104
Chapter 3 XIMLIISON AP ...ttt e et e e e e e e e e et e e e e e e e s annbaneeeeaeeeeeannnnnnees 107
Lo T T i o PR 107
REQUEST. ...ttt e e s 110
What t0 do in the reqUEST ..o 112
SeVEral REQUESES ... 112
REOUESTE TYPE ..ttt ettt e e e e ettt e e e e e e 112

L0 T 1= = U PSR 113
OPEBN @ SESSION ... 113
SPECITY HAtADASE ... 114
SPECITY TADIE. ... 114
(= (el g TN T [t (=T 1 PSSR 114
Attributes for "Extended statistics between several Boolware indexes".uvvvvvevvveennnnns 118
Search in a database/Boolware INAEX...........coouiiiiiiiiiii 123
T T PON S e 124
HOW tO diSplay the FESUIL..........uieiiiiiiiii s 124
Connect XML-response to an eXtern DTD........coii oo 124
Yo 88 £ o = | 125
Which records should be fetched and in What Ordereeiviiiiiiiiiiiiiiiiiiiiieieees 126
Select COIUMNS O TEICN. ... 127
Calculate and fetch StatiStCS.........cooii i 128
FetCh SIMIlArity VECIOIS.uviii i e e e e e e e e e e e e e e e e e aaan e e e e eeeeeennnnn 129
=T o 11 PP POPPPPPPPPT 129
SEESEAICK . 130
FEICN MELATALAueiiiiiiiiiiiie s 130
ReSPONSE fromM BOOIWAIE SEIVELcceeeiiieie ittt e e e e e e e e e e et e e e e e e e e eaannn e s 131
Was the request SUCCESSTUI OF NOL........coii i e e e e 132

L L A 122 010] 1S 132
Export retrieved reCords t0 a file........oovee i 133
Response for a request Of tyPe QUETYooevuiiiiiii e e e e e e e e e e e e e e e aeaeens 134
Response for a request Of tyPe INAEXceevviiiiiii i e e e e e e e eees 135
Response containing QUENY HISOIYc.coeuiiiiiii i e e e e e e e e e aaees 136
RESPONSE fOr StALISHCS. ..uuuiiieeiieeiiii i e e e e e e e e e e e et s e e e e e eeeeaanaaaeaeaenes 137
Response for SIMIlAITY VECIOISuiiii i e e e e e e e e e eeaaees 139
RESPONSE fOr SEt SEAICNo e e e e e e eaes 139
RS 0o 1= (o] g g =] =T - L= USSPt 141
LOOKUP ettt ettt e e e e e e et et e e e e e e bbb et e et e e e e e e e n e e e e e e e e e e e e nn b r e eeeaeens 142
T 11 1 142
ST 0 0] 1] = PP 144
[0 (0 oI 11 4] o] L= USRS 145
Lookup example with conditional replace............cooooiiiiiiii 148
Example with conditional replace without [00KUP ..., 148
EXMIPIE XIML L.ttt s 148
Example 1 A SIMPIE QUEIY ...cooieiiieeeeeeeeeee e 149
Example 2 Refined query with reSPONSE.........oooiiiiiiiiii 149
Example 3 Refine and QUEry HiStOrY.........oooiiiiiiiiiiii 150
Example 4 Getthe remaining artiCles ..., 151
Example 5 SOrtthe resuUlt ..., 152
Example 6 FetCh INAeX terMIS ... 153
Example 7 Fetch Index terms Within reSUlt............coooiiiiiiii e, 154
Example 8 Fetch hierarchiC indeX ..., 154
Example 9 Fetch Index terms Within reSUlt............oooiiiiiiii 156
Example 10 Positioning within selected group of terms in frequency order.............cccccoeeeeeen. 157
Example 11 Fetch specified INAEX terMS.........ccooiiiiiiiii e, 157

Example 12 Get statistics Of USed QUETY TEIMISoooiiiiiiiiii i 158

Example 13 Get records in specified rank order on specified termcccooviiiiiiiiiiiiinnnnnnnes 159
Example 14 Get records in specified rank order on weighted columns..............cccevviiiinneeenens 160
Example 15 Search in two databases with tWo reqUeSES ... 161
1O g =T o] (T g [0 1 ST PP P PP PP PP PPPPPPPPPPPPPPPPR 162
L0 YT 4 = PRSPPI 162
L (0T @ 11T =P 163
V2= U = L] PP 167
L= (o T 0 LT 168
StrNGS, NUMENC AN GITAYS ... i e 168
Procedures and calls t0 Other fIOWSiiiiiiiii e e 169
MECTOS QNG PAFAMELIEIS ...ttt s 169
SN GO DA .t 170
NOTMI@IIZING L1ttt s 170
WRIGNTING ..o 170
DESCIIPLION OF SCOMNQ ..ttt s 170
CUSEOIM SCONNG ..ttt 171
Reduction of score when searching and manual SCOMNG ... 172
[(0T =Y [T =T | E S =) 1= (=T T = 172
o] 1= 1 173
o= || 11 1R 173
CAUL PIOC. e 173
CaUl SO Tt e 174
o0 1111 TN 174
Lo 1153 10 1 1] = Vg | EETNS 174
Bl 175
Bl 175
L (ST o1 1 (PP 175
(L T 175
OO 176
lOW 177
1100170 01U | P 177
FOr e 177
T 178
TNCIUGE ettt s 179
o o 179
1S PO PP 180
o 111 11 | 180
=T = 1 1= = 180
11 180
(0 181
FESUIISEE ...ttt s 181
L] (0] 0 RO TP PP 183
o 0] £ TP PTP P PP UPPPPPIIN: 183
£ o7 0] o [SRR 185
S AN O 1o 185
K= PP PP TPPPPPIIN: 191
1T 11 TP PPRPRRRY 191
FUNCLIONS = OVEIVIEW. ...ttt s 193
CAICUIALION ...ttt s 193
SHANG FUNCHIONS L.ttt s 193
LOGQICAI OPEIALOIS ... 193
FUNCLIONS = TEIEIENCE. ... ittt s 193
Y o1 PPPRPPRRY 193
F £ = | PP UPPPPRUPPPPIRN 193
W . 194
(600] 1 1T 0 1= 1T TP OPPTTPUPPPT 195
L000] 0 0T 0] (=TS ST PTUPPPTTPUPPPT 196
{600 PP UPPPTT 196
D | (USRI 197

DI .ottt ettt ettt 197

(1] =] (USSP 197
DIOPCIIAN .ttt s 197
(D (0] o] (=] 1o o [PPSR 198
1Y PPt 199
[| £ TR 199
P PPPPPPPPRt 199
=] 199
) 200
[OF= 1Y ST 0 111 201
[T TR =T o o | S 201
LLOOKUP Lttt s 201
Y= (od o TR 201
Y = D= [1TSS 202
LY L0 FOT 0 o) o TR 202
Y L0\ Z= 11U 1= TSR 203
1071 o 203
[N Lo g 4T 1TSS 203
N[0Ty =T o PSSO 204
NUMEBINGE ...ttt e e ettt et e e e et e e e e b e e e e et e e s e e e e e e e e e e nnna e as 204
Oy 205
T 205
= Lo [205
REPIBCE . ..ttt s 205
L CA Y= T T 206
S 206
S0 1 PSP TP P PP PPPRPPPRIN 206
] 0= (o = 206
S o PP 207
T 207
Y= 1 PP PP PPPPPPPRIN 207
)11 o SIS 208
) 208
L= L TP PP PPPPPTRTI 208
TS 208
LI 1T PPPPPPPPPTRT 209
L1015 ¥ 1T PPN 209
I £ PP PPPPPPP 209
LI 1TSS PPPPPPPPPTRR 210
L L@ 1T o] o = 210
[V ST PP PPPPPTRRN 210
R T T TP PPPPRRRY 210
LS00 o] o o] ¢ 211
Yo L=To oL ol o= L Tt (= 212
Square brackets (CharaCter ClASSES)uuiiiiiiiiiiiiiiii e e e e e eeaaaaaas 212
S0ME MOIE SPECIAI EXPIESSIONSciiiiiiiiiii e e e e e ettt e e e e e e e et e e e e eeeee it e e e eeeeaassnaaeeeeeeeesernnns 212
Practical INtrOdUCTION.........cooiiiiiie e 213
YU o] oo (T0 I =3 Tq 0 1SS o] L 213

L@ 10 = g 11 1T= £ 213
SPECIAI CHATACTEIS ...ttt s 214
L0 = 1= 1o (] 0 = 1S 214
Grouping and AIEINALIVESuuuiiiiiiiiiii s 215
D OGS e 216
(O gF=T o] (=T g @@ 1Y I o] o] 1T o PSPPI 219
GBIl .. 219
Error handling MOELuuuuueiiiiiiiiiiiiii s 219
Y ET] (o] o [P 219
PIrOPEITIES ... 219
AULOTIUNCALE.....c ettt e ettt e ettt e e ettt e e e e et e e e e aa e e e ee e e e e esn e eeenaaeeennnnns 220
D= = 0 Y- £ 220

(D21 = | 0= LYY T 220

| (0] (OFo o [T 220
(0T 1= SN 220
EXCEPEIONS. ..t 220
00 =T T I T | 2T 220

A Z=] 651 o 220
/= 0 o £ 220
[o 1= 220
CONNECE(SEIVEN, SESSION)...cci it 220
Response = ConnectExecute(Server, Session, Encoding, StateLess, CMD)ccceeeeeenn. 220
[T E=YoT0] 1] 41T o1 AT 221
Response = EXECULEXML(REQUESL)uuuuiiiiiiiiiiiii s 221
(1= g 11 O10 18] a1 =] ¢ 221
OpPen(DataSOUICENGIME)ccoiiiiiiiiii e 222
EXAMIPIE. 222
(D=1 =1 o 1= (Y1 222
PrOPEITIES ... 222
(@01 | 222
TEEIM (AEFAUIL) ..ttt s 222
EXAMIPIE. 222
(L= =1 o 1= (=Y T 222
PrOPEITIES ... 223
(D= 1= Yo T8 (011 1\ F=T 0 21N 223

I F= 1 N 223

[L]0 A F= 1 T 223

] 7= 1N 223
L= 1 o] 1N 223
=31 T T £ 223
011 | (= 223
= 10 o S 223
JLIE= 1 o (S 223
o (0] 0= 1= 224
T o N 224

[10T [N 224
L0 S C=To [N 224
1= 2. 1 224
ST (o (@0 1o | N 224
ST] (0 [T N 224

] = 1N 224
=31 T Yo £ 224
ST o1 1 | (< 224
= 1] o =TSSP 224
[T o T 225
(0] 0= 1= RSPt 225
Y0 (U =T NS .4 TN 225
(DY {1 T<T0 ST 4 < N 225
L0 S = To [N 225
1= 0 1 225
N[O T (TR o7= | =N 225

g LYo 1= o o RN 225

[LTSS TPTRRR R PPPPPPPINE 225

RV 2= [T 226
EXAMIPIE. e 226
TaTo =3 q=To le] o =T ox PP PPPPPPPRt 226
PIrOPEITIES ... 226
RTA o o [T 226
SN e 226
(0001 0] o] (=31 T PP P TP UPPPPIN 226
N[0T =T (o 226
(L0 (S = To [226

[ST« N 226
[T 0 10152 1o T 226
GIOUPEA ... 226

[N ST N 226

[N L=T= 1 L LT 227

[=11 2C= 1o [T 227

[010 1= (o 227

S (10 01 1= T 227
SIMITANEY e 227
[0S L (0T o7=\ 1 o] T 227
MAIKUDCOAEA ...t s 227
STOPWOIAS ... 227
MEMONYMAPPEM ...ttt s 227

N 1= T 227
GO G S ..o e e 227
(=0 1Y, =] (= 227
GEOMUIIPIE ... 227
SHINGASIS .. 227
ATA 0T (0 1= =T 227
L1 (a T 5] 1T T PP P PP PP P PPPPPPPPPPPPPINt 227
VAV A1 o1 o TP 227
(0T 227
D8 1111 (o IR 228
ST U] o] =] o [T 228

[T T o 228

[F 1 = 1= o RN 228
[od T T @101 (=] £ 228
(0] 0= 1= 228
I L8] Lo 10 |1 (=T 228

ST YA V4] £ (o TR 228

ST Y25 €= T 1T S 228

B 1SS TSI (o] N 228
L0 IS YT (o TN 228

R Te ST TTs) o] 1N 228
oA YT [0 1 N 228
R 1) (oS =TI (o] N 228
0] £ 228
BT 01T 6 €= T N 228
I =T =T 2T o RSPt 228
N[0T (@1 ¢ 4 =1 1o [N 229
(@] U] (=T £ N 229
BT8O0 U] | (=Y = 229
(@10] (=T £ 229
(0] 0= 1= USSPt 229
(@ | N 229
TEEM (AEFAUIL) ..ttt s 229
EXAMIPIE. e 229
(@]] (=T 229
PrOPEITIES ... 229
L0700 0[] g Y/ o1 TP PPTPTRP 229
(@101 (=T N = 2 =N 229

X od o114 0101 F= 1 (<Y I 229
LT A= 1[0 1< 229
THIEAATIMEVAIUEceeiie et e e et e et e et e e e e e e e e et s eaaseaaeesaa e sanenen 230
WaAlITIMEVAIUE ...ttt et et e e e et e e et e e st e e st e s e e et e eaneeeans 230
LT L0 U] 1 (=T £ 230
PIrOPEITIES ... 230
(@011 | 230
TEEM (AEFAUIE) ...ttt s 230

L4 L=T (G010] a1 (=] G 230

PIrOPEITIES ... 230
L0700 0 1{=T o Y/ o1 PRSPPI 230
ElAPSEUATIMIE L.ttt s 230
I OSTIING . ¢ttt s 230

L7010 11T 7 AN A {71 o] U (= PSRRI 230

PrOPEITIES ... 230
LOL0 1011 (=T N F=T 0 1= PPN 230
ot od 1 [U F= L= o USSP 230
1Y/ D V=111 = PSR 231
IMINVAIUE ...ttt e e e e e e et ettt e e e e e e eeeesaan e e e e eeeeeasan e eeeeeeeesennnn 231

Lot 0] 0 1T S 231

PrOPEITIES ... 231
{00 ¥ [o | S PP PPPR 231
= el 0 1T PSR 231
=1 o PSR 231
L o [PR 231
Y= 1T (o) S 231

Y71 T o SRR 231
IMOVETO(HIENO) .. 231
GetValue(FieldName / FIeldINdeX)ooooiiiiiiiiiiii 231

LAY o o PP 232

PrOPEITIES ... 232
1711 1 T o PR 232
74 o T 1 41T o IR 232
1] o PP RUPPPPPPPTT 232

MELNOAS ... 232
F a0 1@ (1= 1 1 1) S 232

= 10 o= P 232

AT o] (o PP PPPPRPRPRY 232

o (0] 0= 1= 232
HIECOUNT L. s 232
1 1 o 232

= L0] o = R SSEPPN 232

(O gT= T o (= G ST = V= o 1= o | 233
NIl .., 233
Gl BNt e 233

IS e 233
CONNECETIMEOUL.....ceiiiieiie e 233

MELNOAS ... 233
(o0] 11 1 1=Tod AP UP PP PPTPTRP 233
QISCONNECT ... 234
AACK ... 234
JEIACKH . 234
EXECULE ...t eetttt ettt e ettt oo oottt e e oot e et e e e ettt e et h e e e e e e et e e n e e e e e e e eernna s 234
EXECULE ...t eetttt ettt e ettt oo oottt e e oot e et e e e ettt e et h e e e e e e et e e n e e e e e e e eernna s 235
EXECULEXIMIL ..ottt e e e e e ettt et e e e e e e et e e e e e e e e e e e rra s 236
EXECULEXIMLBYIERESPONSEttt e e e e e e e e e e e e e eerana s 237
EXECULEXIMLINORESPONSE ... ittt ettt e e e e e et et e e e e e e e eeenna e as 237
GEIHITCOUNL ... 237
GEIHITCOUNL ... 237
QELEITOICOUE. ... 238
JEIEITOINMESSAQE ...ttt ettt e e e e e et ettt e e e e e e e et ettt e e e e e e eerbna e as 238
getNUMDBErDAtabasES........cco o, 238
getDAtADASEINTO ..o 238
GEINUMDBEITADIES ..., 238
QeLTADIEINTO ., 239
GEINUMDBEICOIUMNS. ... 239
GELCOIUMNINTO .. 239
GELCOIUMNINTOEXci i 239

EIKEYVAIUE ... 240

GEUINAEXWOI ... 240
GEUINAEXWOI ... 241
EIPEITCOUNLEIS ... 242
GEIQUETY TIME. . 243
GEIRANKMOTE ... 243
LY LR =T 0] 1 (0T [243
EIVEISION ... 244
EICHENIVEISION ..o 244
LE=ToT0] 0] g LYo AL o Es) PR 244
£Y0] ST | 245
FEECNTUPDIES. ..ttt ettt et s ettt e s et s et st ssssssnnnnnne 246
L1001 LAV (o £ 246

(ol (<T= 1 (<1 OF=1 (o1 @ o] [1]010 o IR 247
(=10 010)YL=1OF= 1[oT @01 1110101 o IR 247
COMPUEESTALISTICS ... 247
ETHISIONY .. 248
EESELINGS ..o 248
SEESEIINGS ..o 248
QELSENGSXIML ... 248
SEESEINGSXIML ... 249
(@] 157121 T TR 249
[T Lo LT 249
1= 1.0 = 249

L3 L PP PPPN 249
L1000 NS 249

172 o 11 249
1= o |4 249
(2= |0 N 249
0] (= 249
(@00] 10 [0 T a1 1o 7S 250
= Lo 3 250
7= 1 250
117> T £ SSERPS 250

LS 7N 250
L74 =SPS 250
LT E=T YL o)V L= [1= o 250

(o [STod [=1 (O 01U] | A 251
(@00 [0 [0 T a1 10 251
[T [0 251
= 1 T 251
12T £ SSERPPNS 251
1172 T 1S 22PN 251

LS 74 N 252
L74 =SPPN 252
PHMAINYKEYSEOUENCEcovviiiiieeiieeettee e e e e e et e e e e e e e et et e e e e e e e et ta e e e eeeeasataaeaeeeeeestananaaeas 252
(o [STo1 [0 =1 (O 01U | ST 252
(@]] (=T 252
[T Lo 252
(olo U1 (=T 1Y/ oL TP PO UP PP PPTPTRP 252
(070 18] 01 (=1)\ F= T [N 252

P2 (01010 | 0101 =1 (=10 [T 252
(LT AV 4= 11U 1 252

LT ET= Lo I T V2= 1 LU 252
WAITIMEVAIUE ... ettt et et e et e et e et e e st e e sa e e et e e et e e aaeeaaseenns 252
(000 18] 01 (=T AN] oV (=TT 253
[T [0 253
(oo 10T 1 (=T AN F= T 0 1= 253

= (o010 | 0101 =1 (=10 [T 253
00F V4= | LU 1 253

10

TRV Z= 10 LI TPTT 253

L7010 01 {=T o Y/ o1 TP PPPT PSRRI 253
[T (o £ 253
CLUUNKNOWN. ...t e e e e e e et e e e e e e e e e et eeeeeeeeestaaannns 253

Ct XMLREQUESTS ... oo 254

ct BOOLEANQUERIES ... 254

Ct SIMQUERIESo 254

Ct DATAFETCH .. 254
CLINDEXTERMS 254
CLSORTINGS ... 254
CLMAXTY PES ... 254

[21 (0] {0 TR UPUTPRPTR 254
[T Lo LT 254
(=T A T= 1 PR 254

[0 £ o 254
HISTOTY .ttt s 254
[T Lo LT 255
LS 255
o011 255
LY (R AL=T0 [E=N (<T@ 01U o | AP 255

L0 (2377 AY 4 (o TN 255
[T Lo LT 255
(@10) 970 Yo 2 0 1< o [P 255

1 (@ T U] o) ST PTT 255
LS [N 255
LSS 255

[od T @101 (=] £ 256
= Lo 3 256
L0 T (@010 (=T £ 256

LS YA Y41 £ 1] T 256

LS YA = 1 =0 1 256

(0] AT STX] 0] 1N 256

LT ASTSTI Y (0] 256

0TSz 1 ST ET] o] 1 256

Lo CEToS TS TT] 0] T 256

ST 1Y TS TS o 256

L= 0 N 256

LU TST 6] 7= o N 256
L= o 01T SRS 256

LT gL @T0] g T 0 0= T Lo £ 256

(070 18] 1 (=] N 257

LU LT (@0 10101 (=] ¢ 257

L LSS 0] 5 = 257
[T [0 257

)1 1 o U 257

1 257

1 72 257

] =1 A= 257
[T Lo 257
(70 11 | N 257

000 Yo [T @0 TU o | 257
0100 Yo [257

£ 0 N 258

=Y o PSPPSR UPPPPN 258

1T 258
1= GO 258
(0 [0 (LY T 258

A2z T E= 1 o< S 258
(01T [=1 o I 258

(U] o] o1 PP UPPPPRUPPTTRPPN 258

11

TS 11111 - S PP PP PPPPPPPP 258
[T (o £ 258

LY SYoYS 0] 011 RN 258

[0 P 1= 1 0T 1] < 258

L=] [T 259

L0 (ol I8 [gTo= 1[0 o IR 259
(10X (G =T o I PRSP UPTPTTP 259
PEOXOTART ... 259

V25 LTI T2 0] o 1R 259

L (O] U]) PR 259
JLIE1 01 =1 0 (o 1T 259
[T Lo LT 259
1= 1= 259
126 L PP PP PP PP PP P POPPPPPPPPPPPPPPPPN 259

1 (O T U) SRR 259
L(<ToT0] (o (@10 o | AP 259
/=3 o Lo £ 260
[0 (23 (=T [T 260

I3 0= 1111 260
TUPIE 260
[T Lo LT 260

[0 [0 T3 AN [0 PR 260
LS00] (=N 260
(70 110 00 =T 260

(O aT= T 0 (=] Sl | o] 1= o 261
L TCT =] = | 261
L 1= o | 261
=31 T T £ 261

N 1= (o o N 261
(7o) 101 o101 (1] t= 1115 1o 262

(@] 11T N 262

(@1 (Y- <TOF= 1 (o OT0] U102 ¥ o [T 262
1] 7= o o N 263
11T ol0) o T o1 SN 263
S0 | (= 263

[STo W (SIS { (== o e 264

o qSTo1 1 1 (=), €Y/ | 265
EXECULEXMLBYIERESPONSEuiieiii ettt e e e e et e e et e e e e e e e e eaa e e e et e e eeaaeeeeannnes 266
EXECULEXMLINORESPDONSEviieiiii et e ettt e et e e e e e e et e e e e et e e e etan e e eaaaneeeeennnns 267

= (o3 o 1 U o] =P 267

(TS o3 0 AV Z<Tox (0] £ 267

(1< (O 1T 00T o1 a1 (o T 268

(1< (O 1T a0 a1 Tl (0] T 268

(T 1Dz 1 e= o F= Yo [1o T 268

(<] = (o T OLo Lo [T 269
GEEEITOIMESSATEceeeeieii ettt e e ettt e e e e e et ettt e e e e e et et ebbb e e e e e e e esbnn e as 269
GEEHISIONY .., 269
(<1 [(L0 U o | T 269
[Ty T 3T o o T 269
[Ty T 3 AT o o T 270
GEtKEYVAIUE ... 272
[T\ 0] =T (0] 1871 o1 F- T 272
GEtNUMDBDEIDALADASESoeviiiee ittt e et e e e e e e e e e e et e e et e s san e s sanessanessansanannns 273

(T N 0] =T IE=1 o] [T 273

(<) =T (G0 T U] (=T £ T 273

(€121 (@ UL oY N oo = PP 273

[Ty = Ta] 1 [T [T 273
LS EIINGS e 274
GEtSEHINGSXIML ... 274

12

(TSIl 1= o1 111 a1 (o T 274

(TS A VA=T £ (0] o [P 275

(1= (O [T a1 AVA=T 110 o [T 275
QUEINYTADIE ... 275

R LEToT0]] A T=T0d £k S £ 275

2T g L0)YL=1O%= 1 (o1 o] 1T 13 4o PR 276

Y =T 101 [T [T 276
SOESEIINGS ... 277
SetSEINGSXML....iii 277

Y0 1 STT U | T 277

(@] 11121 TR 278
[T Lo LT 278
1= 1= 278

[/ L PPN 278
L1001 1S S 3 278

170 o L1 o 278
LENGEN 279
(V2= 110 (< 279

DY LS 279
(@] 1871 a1 011 21 (o TR 279
[T o LT 279
1= 1.0 = 279
12T LS PP P PP PP PPPPPPPPPPPPN 279

LS 7.4 279

L3 L PP PPPN 279

LT E=T Y4 GV L= [1= o 280

(@00 [0 [0 T a1 10 = 280
= Lo 3 280
7= 1 = 280

111> T S 280

117> T S22 EPS 280

LS 7.4 N 281

L74 =SPS 281

LT E=T YL o)V L= [1= o 281

(o [STo1 0 =1 (001U | A 281

(@ 1] (=T 281
T Lo 281
o011 o] (=T g 1Y/ o1 PN 281

(o0 18101 (=1)\ F= T [N 281

F= (o101 | 0101 =1 (=0 [T 281
(10T AV 4= 11U 1 281

L aTEST= o I T2z 1 LU= 281

T LT TSNz 10 =T 281

(@00 18] a1 (=T AN (] o]V (=TT 281
T [0 3 282
(070 18 01 (=1)\ F= T [N 282

P2 (o101 | 0101 =1 (=10 [T 282

00 F A V4= 11U 1 282
0T Y4= | LU= 282
L0700] a1 (=] g Y/ 1T TP PPTTRR R PPPPPPIIN: 282
[T Lo 282

Lo U1 1 N [LAY S 282
CUXIMLREQUEST S ..ot e e et e e e e e e e e et e e e e e e e e e ettt e e e e e e eaarnnaaeeas 282

Ct BOOLEANQUERIESot e et e e e e e e e e e as 282
CtUSIMQUERIESottt e e e e e e e e e et e e e e e e e e e sttt e e e e e eeesraaaaens 282

Lod g B AN YA o 1 o SR PTSTR 282
CLUINDEXTERMS ... it e e e e e e e e et e e e e e e e e e ettt e e e e e eeearaaa e aas 282

Cl S ORTINGS ... et e et e e e e e e e e e et e e e e e e e e e aaat e e e e eeeeesraaaaans 283

Lot Y T I = = TSRO 283
(]2 0] {0 T 283

13

1= 1= 283
(=T 0 4 F= 1 T 283

[0 £ o 283
HISTOTY Lttt s 283
[T Lo LT 283
LS 283
{01 1 N 283

1L R AL=T0 [E=N (<T@ 0 10 o | AR 283

L0 (23747 AY A (o TN 283
[T Lo £ 283
(@ T0) w740 To] 1 0 1< o [P 283

1 (O T U) SRR 284
LS [N 284
LS 284

[T L0101 a1 (=] £ 284
[T Lo LT 284

L1 T LOT T 0T | (= = 284

LS AV AV L=1 £=) o EPT 284

LS VA) t= 1 (=T R T 284

L0 YT (0] 1R 284

L T IS TSI 0] 1P 284
PEAKSESSIONS ... 284

Loy TGS TSIt (0] 4 LT 284
PEAKEXECSESSIONS. ...t i ettt 284

LT 0 N 284

LU LTS 5] 7= o N 284
L= £ o 01T P 285

LT gL @To] a T a0 F= 1T £ 285

(L0 10 |1 (=] 5N 285

LT LST (@010 L1 (=] N 285
ST o0 15 285
T Lo 285
1 1 o 285

[N 285
2N 285
=11 o TSRS 285
T Lo 285
LTS T (0] 11 T 285

[0 P2 L= o =T T 285
(=1 o] [N 285

=10 | (o)L I (0T To7= L o) o T 286

0] (0) T T o PN 286
101 (@] (o 1= U 286

AV T I TS 1) o N 286
1O 0 U | 286

] =1 A= 286
[T Lo 286
(70 11 | N 286
00T [T @0 TU o | 286
0100 Yo [286

£ 0 N 286

2V o TP UP PP PPTPTRTR P 286

1T 286
1= G 286
(0 [0 (LY T 286

A2z LT 1 o< S 287
01T [= I 287

(U] o] o1 PP PUPPPPRUPPPTRPPIN 287
[0V 287

14

LK1 01 (=11 a1 (o 1T 287

L] 0 USRS 287

L E= 10 0[PP 287
[1E2T6 LTPPTTPPPPP TP P PP P PPPPPPPPPPPPPPPPPPPN 287

T (O o o | SR 287

(=T o7] (o [@011 o | PSS 287
Y711 o o £ USRPPPN 287
1o 1= o SRS 287

] = 1 TP 287
TUPIE 288
=] 0 USSP 288

(o o o]\ Lo P 288

LS To o] (PP PPPRPPIS 288

Lo] 0] 1 01 0 E ST 288
Chapter 8 PHP @XEENSIONuiiiiiiiiiiiiiiiiiiiiiie ettt e e e aeaae s e e eeasaesseseeseeesssseseeesbessnneneennes 289
LT 1= | PRSPPI 289
PP _DOO0IWAIE ... s 289
L] T3 10 1RSSR 290
bw_add_calc_COIUMN ... 290
PW_COMPULE_ SEALISTICS....oe i 290

W _CONNECT ... 291
DW_CONNECIEXECULE ... 291
BDW_CONNECIXMILL... 291
BW_ cONNECIXMINOIESPONSE.o 292
DW_databases ..o 292

oY1V o F= = o = EY ST o 01U o | 293

o111V o 1St T =T X 293

(o)1 1V o T o] o o1 Lo o] L1 [y ¥ o I 293
o111 =T) 293
oYV 3= U - 294

oYV =3 (STt U1 = | 294
DW_eXECULE XMl _NOIESPONSE.....cieiiiiie ettt e e e r e e e e e e et e e e e e e e earnnnaeeas 294

oY1V 1= (o g T T T 234 Y (o 295

oYV 1= (ol g T 51 VLo 296
o111V 1= o £ 296

oY1V 1= o £ o 01U | U 297

oYV o 1=y A o =T g o011 (=T 297

oY1V o 1= Ao 01T oY 297

oYV o 1=y Ao 10T YA L 1= 298

oY1V o 1=y Ao [0 T=T Y2 (12 L= U 298

oYV o 1=y A = U] (g o To [299

oY1V o 1=y A=Y= 1 11T S 299
DW_get SEttiNgS XMcoouiiiiii e e e e e e e e e e e 300
o311V 1 (oo U o | O 300
oY1V £ 001 (o S 300
oYV £ 0TV =] (T U 301

W 0PN 301

W UETY 302
DW_rECONNECHITEXISES . .iiiiiiiiiii i e e e e e e e e e e et e e e e e e e e aaaaa e eas 302
oYV A =T (o S 4T Yo [T 303
DW_SEL fEICR SIZE ... e 303
DW_SEt ranKMOAEcooiiiiiii e e e e e e e e e e r s 304
oYV A=Y= L=t Al o U 304
bW_set_Settings XMl ... 304

oYV o A =1 L U PTSTRR 305
o311V = o] [T USSP 305

oYV = o [T o0 1 [| PSP 306

oYV Y=Y £ o] o SRS 306
0= T3 0] o] = 307
Chapter 9 BoOIWAre XMl CENT..........uiiiiiiiiiiiiieiiiieiieee ettt eeeeeeeeeeseasaeessssssssssssssesesssssssssnsrnnes 310

15

Program exXample.........ooo 317

Error handling ... 319
ChEPLEN 10 PIUGINS. ...ttt ettt s et st s st s st e e s e st eesneesensennnnnnnnnnes 321
LCT=T 0 1= = | SRR SRPPPIIN 321
R ETo R L= g [aTo I o110 o] ¢ £ PP P PP P P PP PPPPPPPPPPPPPPPPRt 321
CUSEOM INAEXING (BOL) ..ttt s 321
Parameters fOr PIUGINSoooi i 322
CUSEOM SCOMNG (B02) ...ttt s 322
CUStOM PRONETIC (B03) ...ttt s 322
CUSEOM FANKING (B04) ...ttt s 323
LU 1T Y o PP P PP PP P PPPPPPPPPPPPPPPPPRt 323
LCT= 1101 (0]) 323
EXECULE() 1 324
EXECCMD() .. 326
CUSEOM TANKING (B04) ...ttt s 328
QUESHIONS AN ANSWETS ...ttt eeeee ettt e e e et et e e e e e e e e e aatt e e e e e e eeeaasa e e eeeeeeeaessn s eaeeeeensnnnnaaaeeaeeees 328
Appendix 1 Constants and SIFUCLUIESoooiiiiiiei e 329
a1 o T 0T 1T o PR 329
L 0] 0 1 r= 1 P 329
Constants to describe the presentation OFdEr......... ... 329
Constants for index methods used when searching and presenting index termscoeeene. 330
Constants used for Column attributes and types in variable flags.........coooeeeiiiiiiiiiiiiiee 330
Constants used for Column attributes and types in variable flags2.........cooooeiiiiiiiiiiiiiiiin 331
INAEXING METNOUS ...ttt s 331
Il Y PES ettt n 332
FIEIA CONMEENES ...ttt s 332

(@ o =T = 10 £ F-J 0 T [332
FHEIA SEALUS ...ttt s 333
Constants that describes the status of @ database...........ccoooiiiiiiiiiii 333
Constants that describes the status of @ TabIe s 333
Constants for the databaseuuueiiiii 334
SUTUCTUIS . .ttt ettt e e e e ettt et e e e e e et e e e e b b e e e e e e e e aeb e e e e e e e e e tnnneeeaeeen 334
Information on & DAatabasecoooiiiiiiiiii 334
Information N @ Table ..., 335
INfOrmation 0N @ COIUMMNoooiiiii 335
Information on data in @ COIUMN.........oooiiiiiii e, 336
Information on a row of data (FESUIL FOW)uuiiiiiiiiiiee e e e e e e e e eees 336
Information on an iINAEX MM ..., 336
Information 0N QUENY HISIOMYuuuuiiii e e e e e e e et e e e e e e eeeaanneaaeaeenns 337
INfFOrMation ON SEALISLICS.......ccoiiieii e 337

P o] o 1T Lo [A g o [T Y- Vo [PP 338
T 0o [8Ted 1o] o [P PPPPPPRS 338

16

Chapter 1
Application development

This chapter describes the architecture of applications that use Boolware Index server. In
Boolware there are several different API:s for developers: the Functional API for C++ and Delphi
programmers, the XML API when communicating via a HTTP/XML protocol and finally the COM
object when using Microsoft tools such as for example ASP or Visual Basic.

Topics treated are: definition of client and server concepts and how application developers shall
use the Boolware server.

Who should read this book

This book is intended for application programmers, who need a deeper understanding how
Boolware can be manipulated: through a C++, Delphi application, via a HTTP/XML protocol, via
PHP, JAVA or through COM.

Definitions

Definitions used in this chapter:

Term Description

Boolware server Software that is installed on a central server computer.

Boolware client ~ Software used by applications to communicate with Boolware server.
Boolware Index All index files for a specific data source.

Table Correlates to a table in the data source

Column Correlates to a column/field in a table in the data source

Term, indexterm A searchable word in a Boolware Index

search term .

Primary key One or more columns that uniquely identifies a single row in a table.

17

Boolware overview

This is a conceptual view of Boolware. The picture intends to illustrate how Boolware — through
various APIls — connects with applications, XML scripts and Boolware Manager. The picture also
shows how Boolware communicates with different data sources and the Index files.

Applications

Boolware Manager Web applications User applications
: iy
I i
1 [:
Boolware AP '

([CIC+ XML, JAVA, C# NET, COM, PHP)

I

TCPAP and Named pipes
Boolware Index Server

Boolware Index

Database Adapters

vV

DSN/DBMS

The data source connections are made through adapter plugins. Each adapter is specially
designed for its respective data source. A general interface for many data sources is ODBC. But

since ODBC isn’t well supported on all platforms, any adapter can be coded to use a native data
link, which can be seen in the picture.

Refer to chapter 11 of the Operations Guide for detailed descriptions of vendor specific adapters
and their particular characteristics.

Definition of a client

A Boolware client is any application process that uses the Boolware client library, directly or via
a middleware interface, to establish a communication channel to a Boolware server. The
connection can be local if the application executes on the same node as Boolware server, or
remote if the application must use a network to connect to the Boolware server.

18

The Boolware client library

The Boolware client library is a library that developers of applications use to initiate connections
to a server and to programmatically perform database operations. The library uses the TCP/IP
protocol to communicate with one or more servers, and implements a special Boolware
client/server application protocol on top of a network protocol.

The client library provides a set of high-level functions as an Application Programmers Interface
(API) for communication with a Boolware server. Any client application or middleware must use
the API to access a Boolware Index.

Definition of a server

The Boolware server is a software process that executes on the node that hosts the storage
space for Indexes. The server process is the only process on any node that can perform direct
I/0 to the Index files.

Clients send to the server process requests to perform several different types of actions on the
Inverted files, such as:

. Search the Index based on criteria

. Rank the resulting data

. Return sets of data

. Inspect the list of available databases, tables and columns
. View searchable index terms

The server process is fully network-enabled; it services connection requests that originate from
another computer. The server process implements the same Boolware API that the client uses.
Many clients can remain connected to the multi-threaded server process simultaneously.

Application development

Once you create and populate Boolware Inverted files, you can access the information through
an application. You can design and implement a new application by embedding SQL statements
and Boolware API calls in an application written in programming languages such as Visual
Basic, C or C++.

Step by step introduction

This is an overview of the Boolware API, what functions that are available and how to use them.
Chapter 2 API description, contains a detailed description of each function.

The API enables easy access to powerful searches for applications written for Microsoft
Windows.

All functions return an integer status code that should be checked. A negative value (less than
SOFTBOOL_OK) should be regarded as an error, while positive values (greater than
SOFTBOOL_OK) should be treated as information.

These are six easy steps to communicating with Boolware server:

. Step 1 — connect with Boolware and establish a session

. Step 2 — list all available Boolware Indexes

. Step 3 — attach to one Boolware Index

. Step 4 — list all tables and columns within a Boolware Index

19

. Step 5 — query the Boolware Index
. Step 6 — end the session.

Note: In the following examples, there are intentionally no tests for return codes to increase
readability.

Use the API functions BCGetErrorCode(), BCGetErrorMsg() to retrieve error codes and
messages.

Please note that all orderly integers used are zero-based, e.g. the first element is at index zero.

All list boxes and combo boxes used in these examples should be defined by the application.

Step 1

The first thing to accomplish is to create a Boolware client and establish a connection with
Boolware server.

A Boolware client is an instance of an internal handle that provide thread safety and handle all
communication with Boolware Server. This handle should be saved and applied to all Boolware

client functions. This call should only be done once and the returned handle should be used
throughout the entire session.

In this small tutorial we assumed that there is a global client instance with the name mClient that
have been created once and for all. This client instance should be freed at the end of the
session with a call to the function BCFreeClient() .

mClient = BCCreateClient();

Boolware server must be running on a computer that is accessible somewhere on the network.
Use the server computers network name or IP address to identify it, for example 192.168.0.1.

rc = BCConnect (mClient, "Charlie", "");
or
rc = BCConnect (mClient, "192.168.0.1", "");

If a connection was established (rc is zero), the application can now use the Server.

The above example call to BCConnect() will create a session named "MySessID". The session
name is the unique identification of a session.

Boolware will generate a unique session name if no name is passed. The session nhame can be
retrieved by the app using the BCGetSessioninfo() API.

The session name can be used to reconnect to an existing session. This comes in handy when
for example coding Web applications, since http 1.0 by default connects and disconnect for
each request.

If you pass in your own session name, make sure that it doesn’t conflict with other sessions.

This would most likely not be what you intend.

Example:

mClient = BCCreateClient();
rc = BCConnect (mClient, "Charlie ", "MySessID")

20

When disconnecting from the server, you have the option of closing the session (logging out) or
not. A session can be reconnected to (using BCConnect()) provided that you do not close it
when disconnecting.

Example:
Disconnect but do not close session:
BCDisconnect (mClient, false);

Reconnect to Boolware Server and the previously established session:
BCConnect (mClient, "Charlie", "MySessID");

Boolware Server manages all alive sessions. It will automatically close any session that has
been idle for too long. The default time that a session can be idle before it is closed is 1200
seconds (20 minutes), but this can be changed using the Manager.

The default TCP/IP port to be used is 7008. If the server is setup to use a different port, this port
can be specified in the call to BCConnect().

The port number can be specified as a suffix to the IP address, separated by a colon. For
example: "192.168.0.1:2000" will try to connect using port 2000. Please note that Boolware
must be configured (using the Manager) to listen to this port.

Step 2

When a successful connection has been made, an application can list which databases are
available.

Example:
List all available databases and save for later use.

int rc, num;
char name[128];
BCDatabaseInfo t info;

// Get number of available databases
if (BCGetNumberDatabases (mClient, &num) != SOFTBOOL_OK)
return HandleError();

// Get information about each database
for(i = 0; 1 < num; i++)
{
// Get info about this database
BCGetDatabaseInfo (mClient, i, &info);

// Save database identities in a list
databaselList->Add (info.dsnName) ;
}

Step 3

Choose one of the available indexes by attaching to it using its dsn-name.
The database DSN names were fetched using BCGetDatabaselnfo() in step 2.

Example:

Attach to the dsn named "Company".

21

rc = BCAttach(mClient, "Company");

Step 4

When a database has been successfully attached to, it can be further investigated. For
example, we can list the tables and columns from that database.

Column information guides the application how it is indexed, etc.

See the structures BCTablelnfo_t for information about a table, and BCColumninfo_t for info
about columns.

Example:
Get number of tables in the "Company" database. Save table names in a list for later use, and
fetch info on all columns from all tables.

int numTab, numCol, i, 7J;
BCTableInfo t tab;
BCColumnInfo t col;

// Get number of tables
BCGetNumberTables (mClient, &numTab);

// Get info on each table

for(i = 0; 1 < numTab; i++)
{
// Get info about this table
BCGetTableInfo (mClient, 1, &tab);

// Save table name in a list
tabList->Add (tab. tabName) ;

// Get number of columns in this table
BCGetNumberColumns (mClient, tab.tabName, &numCol):;

// Get info on each column
for(j = 0; j < numCol; j++)
{
// Get info about this column
BCGetColumnInfo (mClient, tab.tabName, j, &col);

// Save column in a list
collList->Add (col.colName) ;
}

Step 5
This step describes how to search and retrieve data from Boolware.
The database used in this example is "Company". This database has a table called "Employee".
That table has columns such as: "LastName", "FirstName, "Address" "City", "Zip" etc. The
primary key of this table is "ID" (which we found out using the BCGetColumninfo() API,
examining the flags field from the BCColumninfo_t record. The content in this column makes it

possible to retrieve the tuple from the data source.

Example:

22

In this example we are looking for persons with a first name beginning with "An". For example
"Ann", "Andreas", "Anthony" etc., residing in the City of London.

For more information regarding the query language, see "Softbool Query Language".

int result, recNo rankMode, i, 3J;
float score;

char key [128], tabName [128];
BCRowData t rowData;

// Do the search
BCQuery (mClient, "Employee", "FIND FNAME:An* AND
City:LONDON", &result, NULL);
// Fetch primary keys for all matching records
for(i = 0; 1 < result; i++)
{
// Get primary key
BCFetchKey (mClient, "Employee", "ID", i, key, sizeof (key),
&score, &recNo, rankMode);
// Save primary key in list
pkList->Add (key) ;
}

You can also let Boolware fetch the rows directly from the data source.
/I Get the 50 first chars from FNAME and CITY
for(i = 0; i < result; i++)
{
/I Get one row
BCFetchRow(mClient, "Employee", "FNAME, CITY",
i, 50, &rowData);

/l Get each column from the row

for(j = 0; j < rowData.count; j++)
{
/I Save name of each found column
colList->Add(rowData.cols->name);

/I Save column value
colList->Add(rowData.cols->value);

}

Step 6

Disconnect from Boolware and close the session (log out).
If the session isn’t closed by the application, Boolware will automatically close it after a certain
time of inactivity.

Example:
Disconnect and logout.

BCDisconnect (mClient, true);
BCFreeClient (mClient);

23

Sessions

Overview

When you connect to a Boolware server with one of the available connect methods, a session
object will automatically be created on the server side. The session object contains among other
things, information about the current search and the result. All sessions in Boolware must have
an ID associated with them. Session ID can be up to max 128 characters long. When you
connect to a Boolware server you can optionally specify a session ID. If you don't specify a
session ID, the Boolware server will automatically generate one and associate it with the new
session.

After the function call to the connect method the session object and its ID will automatically be
used for all subsequent function calls to the Boolware API until the disconnect method is
called.

Because a session object is created immediately when you connect to a Boolware server the
XML attributes name and server in XML element open_session in a Boolware XML request,
are only relevant when using the Boolware ISAPI or Apache client (where you do not do any
explicit function call to a connect function).

Lifetime

A session is available until you explicitly call the disconnect method with the parameter
logout=true or until the session has reach it's timeout value. The default timeout value for
sessions is 300 seconds, but that can be changed with the Boolware manager or
programmatically by changing the sessiontimeout setting. If a session reaches its timeout
value, the Boolware server will automatically delete the session object and close the connection
(socket) on the server side.

If you call the disconnect method with the parameter logout=false the session will not be
deleted from the Boolware server, only the connection (socket) will be closed. You can later use
the method reconnectIfExists to try to connect to the same session. Note however that the
session may have reached its timeout value and therefore been deleted from the Boolware
server.

Management

You can see all active sessions in a Boolware server with the Boolware manager if you click on
the Sessions tab. Here you also can logout sessions (forced logout).

Softbool Query Language

The Softbool Query Language (QL) is a simple version of the Common Command Language
(CCL) adjusted for Boolware. The main purpose is to be able to specify both simple and
complex queries in a uniform and simple way.

Refer to Operations Guide for detailed information about the Softbool query language.

24

Execute commands in Boolware

Commands can be sent as text to Boolware, using the BCConnectExecute and BCExecute
functions, using XML / JSON (execute-element/property) calls. This section describes the
commands that are available.

EXPORTRESULT

This command is used to export a result to a file. You can select parts of the result set and
which fields you want to export.

NOTE! This command requires a database to be selected.

exportresult table="<table name>"
field="<field namel1>[,<field name2>...etc.]"
outfile="<file name>"
[rowsep="<row separator>"]
[fieldsep="<field separator>"]
[quote="<character surrounding text>"]
[sort="<sort order>"]
[from="<from row>"]
[count="<number of rows>"]
[maxchars=<number of chars>]
[columnnames="<yes/no>"]
[replacecolumnnames="<field namel>[, <field hame2>...etc.]"]
[randomfetch="<yes/no>"]
[encoding="<is0-8859-1/utf-8/xIs/xIsx>"]
[append="<yes/no>"]
[excludesubfields="<yes/no>"]

Mandatory parameters:

table table name
field name of the fields (comma separated) to be exported
outfile full name of the file that will contain the result

Optional parameters;

rowsep row separator. The default value is CRLF

fieldsep field separator. The default value is TAB

guote character surrounding text in the fields, allowed characters are quote or
apostrophe. Default value is empty value.

sort which fields (comma separated) to be sorted on and sort order, asc or desc.
If the parameter is omitted or is empty, no sorting will take place.

from number of the item in the result to start from. Default value is '1'

count number of items to be exported. The entire result is used if the parameter is
omitted.

maxchars can be set to a value greater than '0' indicating the maximum number of

characters to be exported from each field. The default value is '0" which
means that all data in the field will be exported.
columnnames The value 'no' or omitted parameter means that no field names are added to
the empty out file. The value 'yes' means that field names are added to the
first line in the out file.
replacecolumnnames field names (comma separated) that replaces the data source field
names on the first line (if the columnnames parameter is enabled).
The field names of the data source is used if the parameter is omitted.

25

randomfetch The value 'yes' will store rows randomly in the out file regardless of any sort
expression. Value 'no’ or omitted parameter will not store rows in random
order.

encoding export format. Valid values are 'iso-8859-1', 'utf-8', 'xIs' or 'xIsx'. If the
parameter is omitted, the value with which the session is connected is used.
'XIs' is the old Excel format, and 'xIsx' is the new format (MS Excel Open
XML format). The exported file cannot exceed 2 GB and cannot contain
more than 65,535 identical strings if "exportencoding” is set to 'xIs'.

append The value 'no' or omittted means start from the beginning of the file. The
value 'yes' means the export continues at the end of the existing file. The
parameter is not used when encoding is 'xIs' or 'xIsx'. Default value is 'no'.

excludesubfields The value 'yes' prevents XML subfields from being exported. The value 'no'
allows XML subfields to be exported. If the parameter is omitted, XML
subfields are allowed to be exported

Example:

exportresult table="tabl"
field="fieldl, field2, field3"
outfile="c:\export.txt"
sort="Turnover desc"
quote= mrwan

All records from the resultset will be exported to the file export.txt in the c: directory.

Before the records are exported, they will be sorted descending on Turnover. Only the fields:
fieldl, field2 and field3 from the table tab1 will be exported and the fields will be separated by
a TAB and each record will start on a new line (CRLF). The text in each field will be enclosed in
quotation marks ("); if the text in any field contains quotation marks, this will be represented by
two quotation marks.

exportresult table="tabl" field="fieldl, field2, field3"
outfile="c:\export.txt"
sort="Turnover desc"
quote="""
append="yes"
columnnames="yes"
replacecolumnnames="Name, Address, Town"
fieldsep=";"

All records from the resultset will be exported to the external file export.txt in the c: directory.
The records will be appended to the previous result in the export.txt file. If the file is empty the
first line will be a header line containing the specified field names: Name, Address and Town.
Before the records will be written to the file they will be sorted on Turnover descending. The
only fields that will be exported are: field1, field2 and field3 from table tab1 and the fields will
be separated by semicolon (;) and each record will start on a new line. The text of each field
will be enclosed within apostrophes (‘). Note that if the text contains an apostrophe it will be
represented by two apostrophes.

FETCHCOORDINATES

With this command you can fetch coordinates for current result.
If having group data configured, the group data will be grouped on coordinate position and in
the current result order. You cannot fetch more coordinates than the current search result.

NOTE! This command requires a database to be selected.

fetchcoordinates table="<table name>"
latitude="<latitude>"
longitude="<longitude>"
[from="<from row>"]
[count="<number of rows>"]

26

[rowsep="<row separator>"]
[fieldsep="<field separator>"]
[groupdatafieldsep="<data field separator>"]

Mandatory parameters:

table table name
latitude the field name of the field that contains latitude data
longitude the field name of the field that contains longitude data

Optional parameters:

from start value from where to start the fetch. Default value is 1.

count how many lines you want to retrieve. Default value is the entire result.
rowsep row separator. The default value is CRLF

fieldsep field separator; The default value is TAB

groupdatafieldsep separator between grouped coordinate data. Default value is |*|
Example:

Fetch 50 coordinates fom table "Person" where latitude field name is "Coord_Y" and longitude
field name is "Coord_X".

fetchcoordinates table="Person" latitude="Coord Y" longitude="Coord X"
from="1" count="50"

FETCHNOTFOUND

This command is used to fetch the terms that was not found in the Boolware index at the last
orsearchex sub-command. The terms are valid for the current table and user. The terms will be
deleted by the next FIND command. You could browse through the terms by specifying a start
value and number of terms you want to fetch. The maximum number of terms that could be
fetched by one command is 50.000. Each fetched term is ended by a CR/LF (new line).

NOTE! This command requires a database to be selected.
fetchnotfound table="<table name>"

[from="<from term>"]

[count="<number of terms>"]
Mandatory parameters:

table the current table where the search was performed.

Optional parameters;

from the term you want to start from (used when browsing). The first term has a starting
value of 1.
count specifies how many terms you want to retrieve (maximum number in a command is

50,000). The default value is all terms.

If only the first parameter table is specified, the answer contains the total number of terms that
were not found in the index at the previous orsearchex.

Example:

After a big orsearchex search on 700.000 DUNS numbers in the table Companies there were
87.953 DUNS numbers that were not found in the Boolware index. These DUNS numbers have
been stored in a file. By using the fetchnotfound you could fetch required DUNS numbers not
found in the Boolware index.

27

fetchnotfound table="Companies"

The response is:
87953 is the total number of ‘not found’ terms.

fetchnotfound table="Companies" from="1" count="500"

The response is the 500 first DUNS numbers that was not found in the Boolware index.
FETCHPOLYGONSFOUND

The command is used to fetch extended information on which polygons that contained the given
coordinate in the sub-command geowithinpoygon.

NOTE! This command requires a database to be selected.
fetchpolygonsfound table="<table name>" field="<field name>"
Mandatory parameters:

table the current table where the search was performed
field the name of the field where the search was performed

After a query with the sub-command geowithinpolygon that have a result, the command
fetchpolygonsfound can be executed to obtain more information about which polygons that
contains the given coordinate.

Example:
fetchpolygonsfound table="mapshapes" field="shape"

This could generate the following result of primary keys and which polygon within the field
"shape" that contains the given coordinate. The WKT/GeoJSON format permit multiple polygons
to be stored in the field and are enumerated from 1.

PK="12345" polygons="1"

PK="23451" polygons="2"
PK="34521" polygons="1,3"

FLOWINFO

This command lists all flows for one or more specified database names.
flowinfo database="<database namel>[,<database name2>]" [xml="<yes/no>"]
Mandatory parameters:

database one or more database names (comma separated). Enter the asterisk (*) for all
databases that have flows.

Optional parameters:

xml The value "yes" means that the result will be presented as xml. The value "no"
means that the result will be presented in text format. Default value is 'yes'.

In the following example there are four databases:DB1, DB2, DB3 and DB4. DB1 has two flows:

Search and match. DB2 also has two flows: list and match. DB4 has one flow: lookup. DB3 has
no flows at all.

28

Examplel:
List all flows for the data bases DB1, DB2 and DB3:

flowinfo database="DBI1,DB2,DB3"

The result from this command is:

<flowinfo>

<database name="DB1">
<flow name="Search"/>
<flow name="match"/>
</database>

<database name="DBR2">
<flow name="1list"/>
<flow name="match"/>
</database>

</flowinfo>

Example2:
List all flows in all databases that contain flows:

flowinfo database="*"

The result from this command is:

<flowinfo>

<database name="DB1">
<flow name="Search"/>
<flow name="match"/>
</database>

<database name="DB2">
<flow name="list"/>
<flow name="match"/>
</database>

<database name="DB4">
<flow name="lookup"/>

</database>

</flowinfo>

FLOWINFOPARAMETERS

This command lists flow variables for one or more specified database names and flows.
flowinfoparameters database="<database namel>[,<database name2>]"
flow="<flow1>[,<flow2>]"
[xml="<yes/no>"]

Mandatory parameters:

database one or more database names (comma separated).
flow the name of the flows to be listed (comma separated)

Optional parameters:

xml The value "yes" means that the result will be presented as xml. The value "no"
means that the result will be presented in text format. Default value is 'yes'.

In a flow you could specify a parameter section that could be listed by applications.
These have the element name <parameter> and should appear within the <flow_input> element
which should be directly under the <flow> element.

Example:

29

<flow>
<flow_input>

<parameter name="Name" type="data" defaultvalue="" description=""/>
<parameter name="Address" type="data" defaultvalue="" description=""/>
</flow_input>
</flow>

These elements could be fetched by an application to get information on special indata
elements from one or more specified flows from one or more specified databases.

In the following example there are four databases:DB1, DB2, DB3 and DB4. DB1 has two flows:
Search and match. DB2 also has two flows: list and match. DB4 has one flow: lookup. DB3 has
no flows at all.

Example:
Fetch flow parameters from the flows: "Search" and "match" from the databases: "DB1", "DB2"
and "DB4".

flowinfoparameters database="DB1,DB2,DB4" flow="Search,match"

<flowinfo>

<database name="DB1">
<flow name="Search">
<flow_input>

<parameter name="Name" type="data" defaultvalue="" description=""/>
<parameter name="Address" type="data" defaultvalue="" description=""/>
</flow_input>
</flow>

<flow name="match">
<flow_input>

<parameter name="who" type="data" defaultvalue="" description=""/>
<parameter name="where" type="data" defaultvalue="" description=""/>
</flow_ input>

</flow>

</database>

<database name="DB2">
<flow name="match">
<flow_input>
<parameter name="who" type="data" defaultvalue="" description=""/>
<parameter name="where" type="data" defaultvalue="" description=""/>
</flow_input>
</flow>
</database>
</flowinfo>

GETAUTOTRUNC

Displays whether automatic truncation is enabled or not (yes/no) for the session. Default value
is 'no’.

getautotrunc

GETDUPRULES

Displays which duplicate rules are available for a given table.
NOTE! This command requires a database to be selected.
getduprules table="<table name>"

The response is a list of duplicate rule names available for the table, one per row (CRLF)

30

GETENCODING

Displays the current character encoding (iso-8859-1/utf-8) for the session. The default value is
is0-8859-1.

getencoding

GETEXITPOINT

Displays the last used exit point in a search flow for the session. Default value is empty string.

getexitpoint

GETHISTORY

Displays whether search history is enabled or not (yes/no) for the session. Default value is 'no'

gethistory

GETINDEXEXIT

Displays whether terms created by custom indexing are used in search or not (yes/no) for the
session.

getindexexit
If the value is 'no’, only search terms created by Boolware will be used in the search. If the value

is ‘yes’, search terms created by the customized indexing will also be used in the search. The
default value is 'yes'.

GETMAXEXECUTIONTIME

Displays the current maximum execution time for the session in seconds.

getmaxexecutiontime

GETQUERYLIMVALUE

Displays the limit value for the number of hits per term for the session when using the querylim
subcommand.

getquerylimvalue

If the term will be found in more records than this value it will be handled as stop word. NOTE
This value could temporarily be overridden when performing the querylim sub-command.

GETSESSIONTIMEOUT

Displays the current "session timeout" for the session in seconds

31

getsessiontimeout

GETSETSEARCH

Displays whether set search is enabled or not (yes/no) for the session.

getsetsearch

GETSTRICTASIS

Displays whether wildcards are handled by the wordasis and stringasis (yes/no) subcommands
for the session.

getstrictasis

HITLISTPOSITION

Retrieve the position of a specifically specified record in the current hit list. This command
requires that the requested record be identified by a primary key in the specified table. If the
primary key consists of several fields, all fields must be specified.

NOTE! This command requires a database to be selected.
hitlistposition table="<table name>"
<pk_field1>="<pk valuel>"
[<pk_field2>="<pk_value 2>"]
[<pk_ field3>="<pk_value 3>"]
...etc.
Mandatory parameters:

table table name
<pk_field1> First primary key field with its value

Optional parameters;
<pk_field2> The second primary key field with its value if the primary key consists of
several fields.
...efc.
Returns the current position of the specified record in the current hit list.
Example:
Retrieve the position of a particular record in the current hit list. The table is "Companies" and
the primary key consists of two fields: "CompanyID" and "CompanyType". The identification of
the record is: CompanyID = 12345 and CompanyTyp = AB.
To retrieve the position of this record if it is in the current hit list, enter the following:

hitlistposition table="Companies" CompanyID="12345" CompanyType="AB"

INDEXEX

This command is used to list index terms from a Boolware Index.

32

The response from this command is the searchable terms that reside in the specified field in the
specified table.

NOTE! This command requires a database to be selected.

indexex table="<table name>"
field="<field name>[<subzoom expression>]"
[max_terms="<number of terms>"]
[start_position="<start position>"]
[type="< type number>"]
[zoom="<yes/no>"]
[zoomresult="<name>"]
[tothits="<yes/no>"]
[continuation="<yes/no>"]
[allixtypeterms="<index type>"]
[resultixtypeterms="<yes/no>"]
[ixtypeterms="<yes/no>"]
[statistics="<sum/max/min/avg>"]
[order="<asc/desc>"]
[termnumber="<yes/no>"]
[freqtype="<index type>"]
[freglimits="<Ilimit>"]
[sepgroups="<yes/no>"]
[keepzeroterms="<yes/no>"]
[skipgeneratedterms="<yes/no>"|
[totdocs="<yes/no>"]
[selected="<yes/no>"]
[reportaction="<open/close/save>"]
[reporttemplatename="<report template name>"]
[levelformaxrecords="<level>"]
[maxrecords="<maximum number>"]
[commandheader="<yes/no>"]

Mandatory parameters:

table the current table

field the current field. After the field name you can enter a subzoom
expression to display hits spread over one or more other values. See
examples of this in "Operation Manual" Chapter 11.

Optional parameters;

max_terms maximum number of terms to fetch. The default value is 50. The
maximum number of terms to fetch in one call is 30,000.

start_position start position. If the parameter is omitted, the first position is used.

type Can be an indexing type or function. Default value is 1 (word).

Can be any of the following:
Index type: Word
Index type: String
Index type: Stemmed
Index type: Phonetic
Index type: Left truncation
Index type: Numeric
0 Hierarchic presentation ordered by number of hits (grouped
index)
11 Index order, each group will be presented (grouped index)
12 Hierarchic presentation in alphabetical order (grouped index)
13 Search terms from search term statistics
14 Frequency; shows the terms in frequency order
15 Index type: Exactly as is Word

PO~ WNE

33

zoom
zoomresult
tothits
continuation
allixtypeterms

resultixtypeterms

ixtypeterms
statistics

order
termnumber

freqtype

freglimits
sepgroups
keepzeroterms
skipgeneratedterms
totdocs

selected

reportaction

reporttemplatename

levelformaxrecords
maxrecords

commandheader

16 Index type: Exactly as is String

17 Index type: Case sensitive

20 Index type: Within words

21 Shows all terms that fulfills the rules for similarity in Fuzzy

22 Use term number as start position for Index type Word

23 Use term number as start position for Index type String

24 Use term number as start position for Index type Phonetic

25 Use term number as start position for Index type Stemmed

26 Use term number as start position for Index type Left truncation

27 Use term number as start position for Index type Case sensitive

28 Use term number as start position for Index type Within words

29 Use term number as start positio8n for Index type Exactly as is
Word

30 Use term number as start position for Index type Exactly as is
String

31 Index type: Within string

32 Use term number as start position for Index type Within string

lists only terms from a result. Default value is 'no'. If field

contains a subzoom expression, zoom is activated automatically.

saved result to be used or named scratch (scratch results). If the

parameter is omitted, the current result is used.

gives the total number of records per term from the entire index.

Default value is 'no'.

continues from the last listed term. Default value is 'no’.

the total number of terms for all index types. Default value is 'no’.

the total number of terms for given index type in the current result.

Default value is 'no’.

the total number of terms for given index type. Default value is 'no’.

statistics on the lowest level when subzoom; sum, max, min and

mean/avg. Default value is no statistics.

sort order, asc or desc. Default value is 'asc'.

gives the current order numbers for this term (relative and absolute).

Default value is 'no’.

the index type for terms to be sorted by frequency (type=14). See

allowed indexing types in the parameter type above.

limits when terms sorted by frequency (type=14). Enter as: n, >[=]n or

<[=]n, where n is the frequency.

the terms should be listed in two groups; first all terms in the result

(zoomed) then all the other terms. Default value is 'no’.

when fetching a zoomed index all terms will be listed; the one in the

result will be listed with a hitcount while the terms not belonging to the

result will be listed with hitcount zero. Default value is 'no’.

skip all strings generated by plugin functions. Default value is 'no’.

gives the total number of records in the current table. Default value is

‘no’.

marks all terms that were marked at the latest reportaction="close".

Default value is 'no’.

What handling of current "analysis" is desired.

‘open' opens the current "analysis" and notes which terms
should be marked.

‘close’ closes current "analysis" and saves the terms that are
marked.

'save' saves the terms that are marked.

gives the name of the current report template to be used in a subzoom
expression (pre built).

level where max no. of records should be tested when "report"

max no: of records that should be fetched at levelformaxrecords when
"report”

specifies whether to print a header line for the command. Default
value is 'yes’

34

Only terms from the requested index type are listed.

You can specify if you want terms from the complete index or if you only want terms that are
included in a previous result.

You can also get the total number of terms for all index types, the total number of terms in the
complete index for given index type and the total number of terms included in a previous result
for given index type.

For each term you get the number of occurrences. Two values can be obtained: total number of
occurrences or number of occurrences in a previous result.

You could order the terms ascending or descending alphabetically or on the number of
occurrences.

The result of this command consists of two parts: the first line is an overview of the request
(omitted if commandheader="no' is specified) and the following lines contain the generated
terms.

The following lines could look a little bit different depending on what index type is listed.

1. " Common" index types:

Word (1), String (2), Stemmed (3), Phonetic (4), Left truncation (5), Numeric (6), Grouped Index
Hierarchic frequency order (10), Grouped Index (11), Grouped Index Hierarchic alphabetical
order (12), Exactly as is Word (15), Exactly as is String (16), Case sensitive (17), Within words
(20) and Term number for all above types (22-30). Each term for the above index types has the
following layout:

(n[/N]) Term [(T)], where

n = number of occurrences
N = number of occurrences in the entire index (if zoom="no" n = N)
T = order number of the current term

2. "Fuzzy":
Lists all words that meet the rules for fuzzy (21):

(n[/N]) Term [(T)] [(F)], where

n = number of occurrences

N = number of occurrences in the entire index (if zoom="no" n = N)
T = order number of the current term

F = similarity percent that the terms are sorted on (100 is exact)

3. Termer sorterade pa indextyp

This index type (type="14") sorts the terms in frequency order (in how many records the term
occurs). The sort order is specified in order. If order="desc" the terms that occur in most records
will be sorted first. If order="asc" the terms that occur in few records will be sorted first. Default
value is descending (order="desc").

In the attribute freglimits you could specify a condition. The condition could be: >N, <N or =N,
where N is the number of records the term must occur in to be approved.

The listing of some special index types is described in Manual "Operations guide", Chapter 11
"Interactive Query" section " Viewing the contents of a Boolware Index".

Example 1:
indexex table="Companies" field="Company name"

35

This is the simplest way to specify this command. The only attributes specified are the two
mandatory attributes: ‘table’ and ‘field’. Assume that the column "Company name" is indexed in
the following way: Word, String and Phonetic.

As no other attributes than table and field are specified the following default values will be used:
index type will be set to Word, max_terms is set to 50, start from the beginning of the index and
Words from the entire index will be fetched.

The result will be as follows:

Table="Companies" Field="Company name" Number of terms="50" Numeric="no"
(1376) A

Q) A.AS

Q) A.AHLQVIST
Q) A.BENGTSSON
Q) A.BORG

Q) A.CARLSSON
Q) A.CONTE

(@))] A.DAHLIN

3 A.DMAN

(@) A.EMNEUS

etc.

Example 2:
indexex table="Companies" field="Company name" type="2"
resultixtypeterms="yes"

In this request you say that you want strings and also the total number of terms (strings). The
result can look like this:

Table="Companies" Field="Company name" Number of terms="50" Numeric="no" Result index
type terms="464048"

(1) "CALL US UP" JAN KILSAND TRANSPORT AB
(1) "COLD STORES"I|ESLOV AB

(1) "DA CAPO" RESTAURANG AB

(1) "K"LINE (SWEDEN) AB

(1) "LASET" HENRIKSSON AB

(1) "RALLY HARRY"BIL AB

(1) "STURE, LAILA AXELSSON AB"

(1) "SALJPROFIL CHRISTER BR

(1) ‘ALLO ‘ALLO AB

(1) ‘THBYGG’, TORD HANSSON BYGG AB

(1) A +BSWEDEN AB

(1) A+ GENLUND AB

etc.

Example 3:
indexex table="Companies" field="Company name" type="1"
resultixtypeterms="yes" zoom="yes" tothits="yes" ixtypeterms="yes"

This request was preceded by a question, in which all companies in Stockholm were searched.
In this request, they say that they want words. Since you only want terms from the latest result
(zoom="yes"), it is a good idea to request resultixtypeterms and ixtypeterms.

The result can look like this:

Table="Companies" Field="Company name" Number of terms="50" Numeric="no" Result index
type terms="58045" Index type terms="251725"

(220/1376) A

(1/2) A.BORG

(2/3) A.DMAN

36

(1/1) A.HANSER

(1/1) A.LEKSELL
(1/1) AMQ

(1/1) A.NASRI
(1/2) A.O:S

(2/5) A:S

(1/1) A:SON
(15/68) AA

(4/5) AAA

(1/2) AAAAA
(1/1) AABC

(1/1) AABGRUPPEN
(2/4) AAC

(1/1) AACG

(1/1) AAEW

(1/1) AAF

(3/5) AAGAARD
(1/3) AAGESEN
etc.

The first line of the result indicates that the total number of terms (Words) in the result is 58,045,
while the total number of Words in the entire index is 251,725.

For each term, two numbers are given: the first is mandatory and indicates the number of
occurrences within the current result, while the second indicates how many occurrences of the
word are in the entire index.

Example 4.

indexex table="Companies" field="Company name" type="1"
resuleixtypeterms="yes" zoom="yes" tothits="yes" ixtypeterms="yes"
termnumber="yes"

In this case, you also request an order number for each term.
Table="Companies" Field="Company name" Number of terms="50" Numeric="no" Result index

type terms="58045" Index type terms="251725"
(220/1376) A (1)

(1/1) A.BORG (2)
(2/3) A.DMAN (3)
(1/1) A.HANSER (4)
(1/1) A.LEKSELL (5)
(1/1) A.MQ (6)

(1/1) A.NASRI (7)
(1/2) A.O:S (8)

(2/5) AS (9)

(1/1) A:SON (10)
(15/68) AA (11)

(4/5) AAA (12)

(1/2) AAAAA (13)
(1/1) AABC (14)
(1/1) AABGRUPPEN (15)
(2/4) AAC (16)

(1/1) AACG (17)
(1/1) AAEW (18)
(1/1) AAF (19)

(3/5) AAGAARD (20)
etc.

The numbers within parentheses after the term is the order number of the current term.

37

LOG

This command is used for custom logging. Applications can write lines to their very own log files
using this command. The log file is located in the directory specified for log files in Boolware
Manager. The name of the log file will be "useryyyymmdd.log", where yyyymmdd is today's
date. The name of the log file can be affected if the key name is used. In that case, the name
will be nameyyyymmdd.log instead of useryyyymmdd.

log message="<message>" [name="<name>]

Example: Makes a note in the "boolware” log file
log message="User ’'Mike’ has connected" name="boolware"

PERFCOUNTERS

This command retrieves all the performance counters, corresponding to the performance tab in
Boolware Manager.

perfcounters format="<raw/rawc/text/xml/json>"
Mandatory parameters:

format the format in which the response should be displayed.
raw used to get an unformatted printout. Fields are separated by TAB (\t)
and a counter ends with a new line (\n):

E.g.

XML/JSON request:\tO\tXML/JSON request:
performed\tO\tO\Mt O\t XML/JSON request: thread time
(msec)\tO\tO\tO\tXML/JSON request: total time (msec)\tO\tO\tO\n

rawc same as 'raw' except that average values are added plus clear text in
'measure time' and 'os time' fields

E.g.

XML/JSON request:\tO\tXML/JSON request:
performed\tO\tO\t0.0\M O\t XML/JSON request: thread time
(msec)\tO\tO\t0.0\tO\tXML/JSON request: total time
(msec)\tO\tO\t0.0\tO\n

text is used for formatted printout corresponding to and formatted as the
look in the Boolware Manager performance tab

xmi is used for printing the performance counters in XML format

json is used for printing the performance counters in JSON format

Example for printout in XML format:
perfcounters format="xml"

RANK

This command are used to set the proper rank mode before presenting the result. The rank
mode will be reset after each query.

NOTE! This command requires a database to be selected.

rank table="<table name>"
mode="<rank type>"

38

[term="<term>"]
[weights="<field1>=<weight1>[,<field2>=<weight2> etc.]"]

Mandatory parameters:

table current table

mode requested rank type. The following types can be used:
norank No ranking
occurrency Rank by occurrence
frequency Rank by frequency
similiarity Rank by similarity
ascending Rank by sort (Ascending)
descending Rank by sort (Descending)

weightedoccurrency Rank by weighted occurrence
weightedfrequency Rank by weighted frequency
customrank Rank by Custom

Optional parameters:

term the term to be ranked on
weights field name and its weight

Example:
In a table, Articles, the following query has been performed: FIND text:yellow cars AND

title:volvo OR ford. The records containing most occurrences of the search terms should be
presented first.

rank table="Articles" mode="occurrency"
will present records containing most search terms at the top of the list.
rank table="Articles " mode="weightedoccurrency" weights="title=10, text=3"

search terms found in column title will be multiplied by 10 and search terms found in column
text will be multiplied by 3 before added to the total for a record.

RANKTERMS

This command will show rank statistics on all search terms used in the current query.
NOTE! This command requires a database to be selected.
rankterms table="<table name>"

mode="<rank type>"

[row="<row(s)>"]

Mandatory parameters:

table current table

mode rank type. The following rank types are available:
occurrency Rank by occurrence
frequency Rank by frequency

weightedoccurrency Rank by weighted occurrence
weightedfrequency Rank by weighted frequency

Optional parameters:

39

row which rows from the result on which statistics are to be calculated. Lines can be
comma-separated and/or as a range of rows. If the parameter is omitted, all lines
in the result are used.

Example:
rankterms table="Articles" mode="occurrency"

will get statistics on all search terms used in the current query:
Number of ranked Terms=4
Term: text:bilar count=4.212
Term: text:gul count=313

Term: title:ford count=715
Term: title:volvo count=419

RELATE, TABLES

See Operations guide, Chapter 11 Interactive Query section Related search (Join) for a
complete explanation of these commands.

SAVEQUERY

Saves the current query for the specified table with the specified name.

NOTE! This command requires a database to be selected.

savequery name="<name>" table="<table name>" [public="<session-/username>"]
Mandatory parameters:

name a name of the query to be saved
table current table

Optional parameters;

public is an id for session-/username. It is the application's responsibility to ensure
that only authorized users have access to the publicly saved Queries/Results. An
id can consist of users within, for example, an authority or a department within
a company.

Example:
savequery name="Query 1" table="Articles"

All commands, arguments and operators from the most recent FIND command will be saved to
the Articles table under the name Query 1, which is then used as an identification term for
future use.

Example:
savequery name="Public query 1" table="Articles" public="SalesDep"

All commands, arguments and operators from the most recent FIND command will be saved to
the Articles table under the name Public query 1, which is then used as an identification term
for future use. To use Public query 1, you must belong to the session-/username SalesDep
and enter this when searching. Only users whose session-/username starts with SalesDep can
be considered.

40

REVIEWQUERY

Displays the contents of a saved query.
NOTE! This command requires a database to be selected.
reviewquery name="<name>"
[database="<database name>"]
[table="<table name>"]
[public="<session-/username>"]
[ctime="<time stamp>"]
[order="<name/ctime/dbname/tabname>"> [dir="<asc/desc>"]]
Mandatory parameters:
name the name of a query to be displayed. Enter asterisk (*) for all queries

Optional parameters:

database filtering by database name

table filtering by table name

public filtering by session-/username or beginning of session-/username

ctime filtering on time stamp when a query was created. The timestamp is preceded by
>, <or=.

Intervals can be specified in the format:
yyyymmdd:hh:mm:ss..yyyymmdd:hh:mm:ss.

yyyymmdd is year, month and day
hh:mm:ss is hour, minute and second
order sort order. Valid values are:
dbname sorting by database name
tabname sorting by table name
name sorting by name
ctime sorting by time stamp
dir ascending (asc) or descending (desc) sort order. Used only if order is specified.

Example:
reviewquery name="*sport*" ctime=">2002" order="ctime" dir="desc"

All saved Queries that contain the word sport in name and are created after 2002 will be
displayed in reverse chronological order; the most recently saved Query is presented first.

Example:
reviewquery name="*sport*" public="SalesDep" ctime=">2002" order="ctime"
dir="desc"

All saved Queries that contain the word sport and were created after 2002 will be displayed in

reverse chronological order; the most recently saved Query is presented first. In this case, only
public saved Queries for the session-/username starting with SalesDep will be listed.

DELETEQUERY

Deletes a saved query.
NOTE! This command requires a database to be selected.
deletequeryname="<name>"

[database="<database name>"]

[table="<table name>"]
[public="<session-/username>"]

41

[ctime="<time stamp>"]
Mandatory parameters:
name the name of a saved query to delete. Enter asterisk (*) for all queries.
Optional parameters:

database filtering by database name

table filtering by table name

public filtering by session-/username or beginning of session-/username

ctime filtering on time stamp when a query was created. The timestamp is preceded by
>, <or=.

Intervals can be specified in the format:
yyyymmdd:hh:mm:ss..yyyymmdd:hh:mm:ss.
yyyymmdd is year, month and day
hh:mm:ss is hour, minute and second

Example:
deletequery name="*" ctime="<20030701"

In this example, all saved Queries created before the first of July 2003 will be deleted.

Example:
deletequery name="Queryl" public="SalesDep"

In this example, the publicly saved Query Query1l for session-/username starting with
"SalesDep" will be deleted. Note that only the one who created the saved Query can delete it.

SAVERESULT

Saves the current result for the specified table with the specified name.

NOTE! This command requires a database to be selected.

saveresult name="<name>" table="<table name>" [public="<session-/username>"]
Mandatory parameters:

name a name of the result to be saved
table current table

Optional parameters;

public is an id for session-/username. It is the application's responsibility to ensure
that only authorized users have access to the publicly saved Queries/Results. An
id can consist of users within, for example, an authority or a department within
a company.

Example:
saveresult name="Sports resultsl" table="Articles"

All commands, arguments and operators from the latest FIND command and the end result will
be saved under the name Sport resultsl, which is then used as an identification term for future
use.

Example:
saveresult name="Public result 1" table="Articles" public="SalesDep"

42

All commands, arguments and operators from the latest FIND command as well as the end
result will be saved under the name Public result 1, which is then used as an identification term
for future use. To use Public Result 1, you must belong to the session-/username SalesDep
and enter this when searching.

REVIEWRESULT

Displays the contents of a saved result.
NOTE! This command requires a database to be selected.
reviewresult name="<name>"
[database="<database name>"]
[table="<table name>"]
[public="<session-/username>"]
[ctime="<time stamp>"]
[order="<name/ctime/dbname/tabname>"> [dir="<asc/desc>"]]
Mandatory parameters:
name the name of a result to be displayed. Enter asterisk (*) for all results

Optional parameters:

database filtering by database name

table filtering by table name

public filtering by session-/username or beginning of session-/username

ctime filtering on time stamp when a result was created. The timestamp is preceded by
>, <or=.

Intervals can be specified in the format:
yyyymmdd:hh:mm:ss..yyyymmdd:hh:mm:ss.

yyyymmdd is year, month and day
hh:mm:ss is hour, minute and second
order sort order. Valid values are:
dbname sorting by database name
tabname sorting by table name
name sorting by name
ctime sorting by time stamp
dir ascending (asc) or descending (desc) sort order. Used only if order is specified.

Example:
reviewresult name="result 4"

The saved Result, result 4, will be displayed in its entirety. This means that the complete

search string will be displayed. In some cases, when, for example, similarity search is included
in the saved Result, the search string can consist of many thousands of characters.

Example:
reviewresult name="*sport*" public="SalesDep" ctime=">2002"
order="ctime" dir="desc"

All saved Results that contain the word sport and were created after 2002 will be displayed in
reverse chronological order; the last saved result is presented first. In this case, only public
saved Results for the session-/username starting with SalesDep will be listed.

DELETERESULT

Deletes a saved result.

43

NOTE! This command requires a database to be selected.
deleteresultname="<name>"
[database="<database name>"]
[table="<table name>"]
[public="<session-/username>"]
[ctime="<time stamp>"]
Mandatory parameters:
name the name of a saved result to be deleted. Enter asterisk (*) for all results

Optional parameters:

database filtering by database name

table filtering by table name

public filtering by session-/username or beginning of session-/username

ctime filtering on time stamp when a result was created. The timestamp is preceded by
>, <or=.

Intervals can be specified in the format:
yyyymmdd:hh:mm:ss..yyyymmdd:hh:mm:ss.
yyyymmdd is year, month and day
hh:mm:ss is hour, minute and second

Example:
deleteresult name="Fotboll*" table="sports" ctime=">20020901"

In this example, all saved Results created after the first of September 2002 and belonging to
the table sports will be deleted

Example:
deleteresult name="Resultl" public="SalesDep"

In this example, the publicly saved Result Resultl will be deleted. Note that only the one who
created the saved Result can delete it.

SAVESCRATCH

Saves the current result in a scratch result for the specified table with the specified name.
NOTE! This command requires a database to be selected.
savescratch name="<name>"

table="<table name>"

[resultat="<intermediate/custom>"]

Mandatory parameters:

name a name of the scratch result to be saved
table current table

Optional parameters:

resultat which result to save. Valid values are:
intermediate the result of the last query
custom the result in the ‘Custom list’ when using Flow

44

If the parameter is omitted, the current result is used

Examplel:
savescratch name="people" table="People"

The current result from the last search will be temporarily saved in the People table in the
named 'people’ scratch. This result can be used at a later time.

Example2:
savescratch name="flow" table="Companies" result="custom"

The current result from the 'Custom list' will be saved temporarily in the named scratch ‘flow'.
This result can be used at a later time.

Example3:
savescratch name="tmppeople" table="People" result="intermediate"

The number of hits from the most recent search command from the People table will be

temporarily saved in the named 'tmppeople’ scratch. This result can then be used at a later
time.

DELETESCRATCH

Deletes a saved scratch result.

NOTE! This command requires a database to be selected.

deletescratch name="<name>"
[database="<database name>"]
[table="<table name>"]

Mandatory parameters:

name the name of a scratch result to be deleted. Enter the asterisk (*) for all scratch
results.

Optional parameters;

database filtering by database name
table filtering by table name

Examplel:
deletescratch name="address" table="Companies"

The saved scratch result with the name address in the Companies table will be deleted.

Example2:
deletescratch name="address"

The saved scratch result named address will be deleted.

SETAUTOTRUNC

This command is used to enable or disable automatic truncation.
setautotrunc value="<yes/no>"

Mandatory parameters:

45

value automatic truncation (yes/no). Default value is ‘no’.

SETENCODING

This command is used to set character encoding.
setencoding value="<is0-8859-1/utf-8>"
Mandatory parameters:

value character encoding. Default values is is0-8859-1.
See Chapter 12 "Unicode" in the Operations Guide.

SETHISTORY

This command is used to enable or disable search history.
sethistory value="<yes/no>"
Mandatory parameters:

value search history or not (yes/no). Default value is ‘no’.

SETINDEXEXIT

This command is used to enable or disable the use of terms from custom indexing.
setindexexit value="<yes/no>"

Mandatory parameters:

value use terms from customized indexing when searching (yes/no). Default value

is yes’.

SETMAXEXECUTIONTIMEOUT

This command is used to set the maximum execution time value for the session.
setmaxexecutiontimeout value="<value>"

Mandatory parameters:

value sets new maximum execution time in seconds for the session. If the value

exceeds the system's maximum execution time, the value will be set to the
system's maximum execution time.

SETQUERYLIMVALUE

This command is used to set the limit value for the number of hits per term.

setquerylimvalue value="<value>"

46

Mandatory parameters:

value limit value for number of hits per term. Default value is 100.

SETQUERYOPTIONS

This command is used to set values for the subsequent query. The specified values only apply
to the next query and will after this query be reset to the default setting.

NOTE! This command requires a database to be selected.

setqueryoptions [backonzero="<yes/no>"]
[defaultoperator="<operator>"]
[querylimvalue="<value>"]
[resultbitmap="<result/customresult>"]

Optional parameters:

backonzero indicates whether automatic back at zero results between operators should
be applied or not. The value ‘yes’ indicates that automatic back should be
done, while the value ‘no’ (default value) means that no automatic
back must be performed.

defaultoperator indicates which operator is to be used between terms that are separated
by a blank. Valid values are: and, or, not and xor. If no value is specified
AND will be used.

querylimvalue all terms that are in more records than this value will be ignored when
searching, when using the querylim subcommand. Default value is 0.
resultbitmap indicates which result should be active, result or customresult. The default

value is 'result'.
Example:

Specify that there should be automatic back at zero response, the operator between commands
should be AND and all terms should be included when searching:

setqueryoptions backonzero="yes" defaultoperator="and" querylimvalue="0"

GETQUERYOPTIONS

This command displays the values that the following query will use. The specified values only
apply to the next query and will be reset to the default value after the query.

NOTE! This command requires a database to be selected.

getqueryoptions [type="<backonzero/defaultoperator/querylimvalue/resultbitmap>"]

Optional parameters:

type the type of setting to be displayed.
backonzero yes’ means that automatic back at zero result applies while ‘no’

means that no automatic back will be performed.

defaultoperator returns the current operator: AND, OR, NOT or XOR.
querylimvalue the limit value when the querylim subcommand is used
resultbitmap which result is active, result or customresult

If the type parameter is omitted, the settings for all types are returned.

47

SETSESSIONTIMEOUT

This command is used to set the session timeout value.

setsessiontimeout value="<value>"

Mandatory parameters:

value

sets a new "session timeout" for this session (in seconds).

SETSETSEARCH

This command is used to enable or disable set search.

setsetsearch value="<yes/no>"

Mandatory parameters:

value

set search or not (yes/no). Default value is ‘no’.

REVIEWSET

Displays the contents of a saved set.

NOTE! This command requires a database to be selected.

reviewset

name="<name>"

[database="<database name>"]

[table="<table name>"]

[ctime="<time stamp>"]
[order="<name/ctime/dbname/tabname>"> [dir="<asc/desc>"]]

Mandatory parameters:

name

the name of a set to be displayed. Enter asterisk (*) for all sets

Optional parameters;

database
table
ctime

order

dir

Example:
reviewset

filtering by database name
filtering by table name
filtering on time stamp when a set was created. The timestamp is preceded by >,
<or=.

Intervals can be specified in the format:
yyyymmdd:hh:mm:ss..yyyymmdd:hh:mm:ss.

yyyymmdd is year, month and day
hh:mm:ss is hour, minute and second
sort order. Valid values are:

dbname sorting by database name
tabname sorting by table name
name sorting by name

ctime sorting by time stamp

ascending (asc) or descending (desc) sort order. Used only if order is specified.

name="S*1" database="Magazines" ctime=">20031016:12:00:00"
order="tabname" dir="desc"

48

All saved Sets, starting with S and ending with 1 and are created after 12:00 on October 16,
2003 and belong to the database Magazines will be displayed sorted by table name in
descending order.

DELETESET

Deletes a saved set result.
NOTE! This command requires a database to be selected.
deleteset name="<name>"
[database="<database name>"]
[table="<table name>"]
[ctime="<time stamp>"]
Mandatory parameters:
name the name of a set result to delete. Enter asterisk (*) for all sets.

Optional parameters:

database filtering by database name

table filtering by table name
ctime filtering on time stamp when a set was created. The timestamp is preceded by >,
<or=.

Intervals can be specified in the format:
yyyymmdd:hh:mm:ss..yyyymmdd:hh:mm:ss.
yyyymmdd is year, month and day
hh:mm:ss is hour, minute and second

Example:
deleteset name="S5S1*" database="Magazines"

In this example, all saved Sets that start with and belong to the Magazines database will be
deleted.

SETSTRICTASIS

This command is used to enable or disable strict character handling for the wordasis() and
stringasis() subcommands.

setstrictasis value="<yes/no>"

Mandatory parameters:

value enable/disable (yes/no) strict character handling for the wordasis() and
stringasis() subcommands. Default value is 'no'. The value 'yes' means that

the normal wildcards *', *?' "' and # will be handled as regular characters
and not as wildcards when searching these subcommands

STATISTICS

This command is used to retrieve simple statistics from numeric Boolware indexes.

NOTE! This command requires a database to be selected.

49

statistics table="<table name>"
field="<field name>"
numgroups="<number of groups>"
[useall="<yes/no>"]
[groupvalues="<yes/no>"]
[emptyvalues="<yes/no>"]

Mandatory parameters:

table is the name of the table
field is the name of the numeric field
numgroups is the number of groups to divide the result into

Optional parameters:

useall is set to 'yes' if you want to retrieve values from the complete table.
Default value is 'no'

groupvalues is set to 'yes' if you want all limit values for specified groups. Default value is
Inol

emptyvalues is set to 'yes' if empty values are to be included. Default value is 'no’

Values obtained are: number of records included in the statistics, the value that occurs most
often, number of records that contain the most common value, the sum of all values, the
arithmetic mean, the smallest value, the largest value, the standard deviation, the variance, the
median value, upper value for specified 'group’, lower value for specified 'group' and all values
for a specified group.

You can specify whether you want to perform statistics for the entire table or only on the
searched result.

A 'group’ indicates in how many parts you want to divide the result obtained.

By default, you always get the lower and upper value for the specified 'group’. You can specify
with a parameter, if you want all limit values for the specified 'group'.

Example: Get statistics for the numeric field "Solidity". Perform the calculation on the current
result (all companies in Stockholm) and determine the number of groups to 5 (quintile). You also

want all limit values for the specified group.

statistics table="Companies" field="Solidity" numgroups="5"
useall="no" groupvalues="yes"

No. of values: 38283

Sum: -779180537.840000
Max: 1326.410000

Average: -20353.173415

Min: -425099700.000000
Variance: 5744603486147.931600

Std. deviation:

2396790.246590

Upper: 82.435000

Medium: 38.870000

Lower: 9.500000

Most frequent: 100.000000

Occurrences: 3095

Group values: 9.500000, 27.825000, 51.435000, 82.435000

No. of values:
Sum:

no. of observations (no. of records containing values in Solidity)
the sum of all observations

50

Max:
Average:

Min:

Variance:

Std. deviation:
Upper:

Lower:

Most frequent:
Occurrences:
Group values:

Example: Get statistics for the field "Cash liquidity". Start from the total number of entries in the
table and determine the number of groups to 10. You also want all limit values for the specified

group.

the highest value

the arithmetic mean value
the lowest value
calculated variance
calculated standard deviation

highest limit value for the specified group
lowest limit value for the specified group
the most frequent value

no. of observations for the most frequent value

all limit values for the specified group

statistics table="Companies" field="Cash liquidity" numgroups="10"
useall="yes" groupvalues="yes"

No. of values:
Sum:

Max:
Average:

Min:

Variance:

Std. deviation:

Upper:
Medium:
Lower:

Most frequent:
Occurrences:

Group values:

217869

610811992.529998

161918100.000000

2803.574591

-35215300.000000

179916774079.192990
424165.974683

538.960000
123.810000
33.890000

100.000000
63

33.890000,
149.970000,

60.820000, 83.630000,

191.260000,

272.360000,

51

103.610000,
538.960000

123.810000,

Chapter 2
API description

This chapter describes in detail all functions available in the Boolware API library.

The Functions are described regarding: name, parameters and return codes.

Detailed API description

The functions are presented in alphabetical order.

All functions return an integer code, which is zero (SOFTBOOL_OK) on success, positive when
the system has a notice (warning or information) and it is negative if an error occurred. The two
exceptions are the functions BCCreateClient() and BCGetErrorCode(), where the Boolware
client instance is created and the current error code is returned.

The examples do not include tests for return codes for the sake of readability. A real application
should always test the return code after each call.

It is also assumed that a proper call have been done to the BCCreateClient() and the Boolware
client is stored in a variable called mClient.

Depending on your language of choice, the Boolware interface is defined in different modules.
C/C++: sbtypes.h, softbool.h, boolwarelclient.h.
Records and error codes are documented in Appendix 1 and Appendix 2.

In all communication with Boolware, where an integer number is used to identify objects, the
first object is always zero. For example, the first record in a search result is record zero.

52

BCAddCalcColumn()

BCAddCalcColumn(BWClient client, const char *table, const char *column,
const char *formula)

Adds a computed column to a table.

Parameters:
BW(Client client - the Boolware client instance
const char *table - the name of the table
const char *column - name of the new column
const char *formula - formula for the new column

You can use formulas to derive new (virtual) columns that are calculated from the values of
other columns.

When fetching a row from the data source, computed columns can be included. If so, Boolware
will perform the arithmetic and return the calculated value.

A calculated column remains in existence until a call to BCDropCalcColumn(), BCAttach() or
BCDetach() is done.

Calculated columns can be explicitly removed using BCDropCalcColumn().

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCDropCalcColumn()

Example:
Simple formula for calculating profit per employee.

if ((BCAddCalcColumn (mClient, "Companies",
"Profit per employee", "profit / numemp") != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

53

BCAttach()
BCAttach(BWClient client, const char *dsnName)
Attaches to (makes current) a Boolware Index.

Parameters:
BW(Client client - the Boolware client instance
const char *dsnName - the name of the Index

The Boolware library operates with the concept of a "current index". This is the index that all
subsequent actions are directed at. Using the "BCAttach()" function, you select the current
index.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCDetach(), BCGetNumberDatabases(), BCGetDatabaselnfo()

Example:
Attach to the Index called "Companies" at the server "Charlie"

char msg [256];
BCConnect (mClient, "Charlie"™, "");
if ((BCAttach (mClient, "Companies") != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

54

BCConnect()

BCConnect(BWClient client, const char *server,
char *session)

Connects to a Boolware server.

Parameters:
BW(Client client - the Boolware client instance
const char *server - A computer name or an IP address, where Boolware server
executes.
char *session - The name of the session to create, or reconnect to.

Boolware Server must be started on a computer somewhere on the network, that can be
reached by the application before a connection can be done.

The server shall be the computer network name, or its IP address; for example 192.168.0.1.
Please note that the server must be accessible (have access rights) from the application
computer.

If you pass an empty string as session name, Boolware will create a new, unique name for the
session. This name can be retrieved using BCGetSessionInfo().

The connection will remain until BCDisconnect() is called.
Return:
- SOFTBOOL_OK upon success

- Error code otherwise

See also:
BCDisconnect(), BCGetSessionInfo()

Example:
Connects with server "Charlie" and lets Boolware create a new, unique session hame.

char msg [256];
BCConnect (mClient, "Charlie", "") != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

55

BCConnectExecute()

BCConnectExecute(BWClient client, const char *server, char *sessName,
char * encoding, int stateless, const char *cmd, char **response,
int *intl, int *int2)

Executes a Boolware command with automatic connect to Boolware server, returning a
response string and two integers.

If sessName is an empty string Boolware will automatically generate a session name, else the
specified sessName will be used.

If encoding is set to the string "utf-8" the session will be set as a unicode session, otherwise it
will be a "ISO-8859-1" session

If stateless is 1 the session will be disconnected and logged out automatically by Boolware
server, else the session will stay alive until BCDisconnect has been called.

Parameters:
BW(Client client - The Boolware client instance
const char *server - A computer name or an IP address to Boolware server
char *sessName - The name of the session
char *encoding - Requested session encoding
int stateless - Should be setto 1 or 0
const char *cmd - Boolware command string
char **response - Response string
int *intl - First response integer
int *int2 - Second response integer

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in ConnectExecute.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCDisconnect(), BCExecute(), BCGetSessionInfo()

56

BCConnectXml()

BCConnectXml(BWClient client,
const char *server,
char *sessName,
int stateless,
const char *request,
BCXmIReply_t *reply)

Performs an XML request with an automatic connection to Boolware server and return the reply
as an XML document.

If sessName is an empty string Boolware will automatically generate a session name, else the
specified sessName will be used.

If stateless is 1 the session will be disconnected and logged out automatically by Boolware
server, else the session will stay alive until BCDisconnect has been called.

Parameters:

BW(Client client - The Boolware client instance

const char *server - A computer name or an IP address to Boolware server

char *sessName - The name of the session

int stateless - Should be setto 1 or 0

const char *request - The XML request

CBXmIReply_t *reply - Pointer to the xml response and the length of the reply
Return:

- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCDisconnect(), BCGetSessioninfo()

57

BCConnectXmINoResponse()
BCConnectXml(BWClient client,
const char *server,
char *sessName,
const char *request)
Performs an XML request with an automatic connection to Boolware server.

If sessName is an empty string Boolware will automatically generate a session name, else the
specified sessName will be used.

To fetch the retrieved data the method BCFetchRow should be used.

Parameters:
BW(Client client - The Boolware client instance
const char *server - A computer name or an IP address to Boolware server
char *sessName - The name of the session
const char *request - The XML request
Return:

- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCDisconnect(), BCGetSessionInfo()

58

BCCreateClient()
BCCreateClient ()

Parameters:
None

Create a Boolware client instance.
This routine creates a Boolware client instance that should be used throughout all other function

calls.
Only one call to this function should be done during a session.

Return:

- BW(Client instance
- NULL

See:

BCFreeClient ()
Example:

Create a Boolware client instance and make a connection to a Boolware server.

char msg [256];
mClient = BCCreateClient();
if (mClient != NULL)
BCConnect (mClient, "127.0.0.1", "");

59

BCDetach()
BCDetach(BWClient client)
Detaches from the current Boolware Index.

Parameters:
BW(Client client - the Boolware client instance

No searches can be performed until a new Index is made current using BCAttach.
Return:
- SOFTBOOL_OK upon success

- Error code otherwise

See also:
BCAttach()

Example:
Detach from the current Boolware index.

char msg [256];
if ((BCDetach (mClient) != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

60

BCDisconnect()
BCDisconnect(BWClient client, const int32 terminate)
Disconnects from Boolware.

Parameters:
BW(Client client - the Boolware client instance
const int32 terminate -Indicates if the application wants to close the session (log out),
or leave it running so that it can be connected to later.
0, do not close the session
1, close the session (log out)

If logout is zero (0), the current session will remain in Boolware, and can later be reconnected to
using BCConnect() with the appropriate session name.
If logout is non-zero, the session will be closed.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect(), BCDetach()

Example:
Disconnect from Boolware, but let the session remain.

if ((BCDisconnet (mClient, 0) != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

Disconnect from Boolware, and close this session.

if ((BCDisconnet (mClient, 1) != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

61

BCDropCalcColumn()
BCDropCalcColumn(BWClient client, const char *table, const char *column)

Drops a calculated column from a table.

Parameters:
BW(Client client - the Boolware client instance
const char *table - name of the table
const char *column - name of the calculated column

The specified column will be dropped from the table.
If "*" is used as column, all calculated columns will be dropped from the table.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCAddCalcColumn()

Example:
Drop all calculated columns from a table.

if ((BCDropCalcColumn (mClient, "Company", "*") != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

62

BCExecute()

BCExecute(BWClient client, const char *cmd, char **response,

int *intl, int *int2)

Executes a Boolware command, returning a response string and two integers.

Parameters:
BW(Client client - the Boolware client instance
const char *cmd - Boolware command string
char **response - Response string
int *intl - First response integer
int *int2 - Second response integer

The response areas depends on the command string. Valid

Under section "Execute commands in Boolware" in chapter
description of the commands that could be used in Execute.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCQuery()

Example:
Activates automatic truncation.

char *response;

int intl;

int int2;

if ((BCExecute (mClient,

SOFTBOOL_OK)
BCGetErrorMsg (mClient,

"setautotrunc value='yes'",

BCGetErrorCode (mClient), msg,

63

&response,

commands are:

1 above you will find a detailed

&intl, &int2) !=

sizeof (msqg));

BCFetchKey()

BCFetchKey(BWClient client, const char *table,

char *col,

const int32 hitNo,

char *buff,

const int32 buffSz,

float *score,

int32 *recNo,

int32 *rankMode)

Fetches a primary or foreign key.

Parameters:
BW(Client client - the Boolware client instance
const char *table - Table name
char *col - Column name
const int32 hitNo - Hit number (starting from zero)
char *buff - Returned string
const int32 buffSz - Size of 'buff’
float *score - Score for this hit number
int32 recNo - Record ID for this hit number
int32 rankMode - Current rank mode

The column to be fetched must be part of a primary key or a foreign key.

The buff argument must be sufficiently large to hold the returned value, or it will be truncated.
The size of the buff parameter is given in the buffSz parameter.

The hitNo parameter tells from which row to fetch the primary or foreign key.

In addition to the above the following information is also returned regarding the tuple:

1 score — the score for the tuple. Scores are assigned when ranking and performing
similarity searches, and are used to present results in relevance order. The score is
always 1 if neither similarity search nor ranking has been done.

2 recNo is Boolware’s internal record ID

3 rankMode tells how the search result is arranged. It can be ordered after occurrences of a
specific word, alphabetical order, similarity etc.

The retrieved primary/foreign key can be used to fetch a tuple from the data source (using
perhaps ODBC).

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCFetchRow().

Example:
Fetch the first 25 primary keys resulting from a successful search in the "Company" table.

int32 1, result, recNo, rankMode, maxPK;
char key [128];
float score;

// Search
BCQuery (mClient, "Company", "FIND Name:An*", &result, NULL);
maxPK = min(result, 25);

for(i = 0; 1 < maxPK; 1i++)

{
// Get next primary key

64

BCFetchKey (mClient, "Company", "ID", i, key, sizeof (key),
&score, &recNo, &rankMode) ;

// Use the primary key here ..

}

65

BCFetchQueryHistory()

BCFetchQueryHistory(BWClient client, const char *table,
const int32 rowNo,
BCQHistoryData _t *resultRow)

Fetches a row from the query history.

Parameters:
BW(Client client - the Boolware client instance
const char *table - Table name. Use this to specify from which table to
retrieve Query history.
const int32 rowNo - Desired row number. Use this to tell Boolware which

row you want. The first row is zero.
BCQHistoryData_t resultRow - Returned row

Use this function to retrieve a single entry from the query history. You supply which table and
line number, Boolware returns information about the Query history line in result.

The Query history is an optional feature that can be used to keep track of how you have arrived
at the current result.

Query history means that all queries and results are saved from one FIND command to the next
FIND. The Query history can also be navigated using the BACK and FORWARD commands.
Boolware maintains a log of the commands used and the number of found records for each
Query command (find, and, or, not etc.). This log consists of one "line" per query command.
The rowNo parameter tells Boolware which query history item (row) you desire.

The row argument is where Boolware returns information about the requested search.

You should use the API BCGetQueryHistorylnfo() first, so that you know how many items are
available.

Note that Query history only is available after a call to BCSetSessionInfoXml(). If Query history
isn’'t available, an error code is returned from this function.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetQueryHistoryInfo(), BCSetSessioninfoXml(), QL language BACK and FORWARD.

Example:

int32 1i;

BCQHistoryInfo t queryHistory;
BCQHistoryData t resultRow;

// Get information about Query history
BCGetQueryHistoryInfo (mClient, "Company", &queryHistory);

// Fetch all query history lines
for(i = 0; i < queryHistory.currQHistoryRow; i++)
{
// Fetch next Query history line
BCFetchQueryHistory (mClient, "Company", i, &resultRow);

// Use the retrieved information
resultRow.QLString // NULL terminated string
resultRow.hitCnt // Total result
resultRow.intermediateRes // Result for string

}

// After the three first lines

FIND Name:John 7.540 7.540
AND Age:>40 960 12.972
AND Salary:>1000 37 9.432

The first column contains the query string. The second column contains the number of found
records, and the third column contains the number of found records for the query string alone. In

66

other words, there are 9.432 persons with a salary higher than 1000, but only 37 of them are
named "John" and are more than 40 years old.

There is another way to achieve the above Query History by sending only one command to
Boolware; you use the special operators ANDF, ORF, NOTF and XORF:

FIND Name:John ANDF Age:>40 ANDF Salary:>1000.

See description of the special operators (ANDF, ORF, NOTF and XORF) in the Operations
Guide.

67

BCFetchRow()

BCFetchRow(BWClient client, const char *table,
const char *cols,
const int32 hitNo,
const int32 maxChars,
BCRowData_t *rowData)

Fetches a tuple from the data source.

Parameters:
BW(Client client - the Boolware client instance
const char *table - table name
const char *cols - comma separated list of columns
const int32 hitNo - the hit number of the desired tuple. First tuple is zero.
const int32 maxChars - maximum number of characters for any field
BCRowData_t rowData - returned tuple

The table name controls from which table to fetch the row.

The names of the desired columns should be passed in the cols parameter. An asterisk (*)
means "all columns".

Use the hitNo parameter to tell Boolware which row to retrieve. The first row in your search
result is row number zero.

Use the maxChars parameter to limit the number of retrieved characters from any column. Pass
zero (0) to retrieve all data in the field, regardless of size.

Boolware will return the tuple in the rowData parameter.

When fetching many tuples, you are advised to use the BCSetFetchSize() function. This tells
the system to fetch more than one row per turn-around to the data source, which in turn helps to
improve performance.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCSetFetchSize(), BCRowData_t, BCFetchKey()

Example:
Fetch the first 25 tuples from the current search result. Fetch no more than 20 characters from
any field.

int32 i, result, recNo, rankMode, maxRows;
char key [128];
BCRowData t resultRow;

// Search
BCQuery (mClient, "Company", "FIND Name:Anders", &result, NULL);

// Limit no. of retrieved tuples
maxRows = min (result, 25);

// Set fetch size
BCSetFetchSize (mClient, maxRows) ;

// Go get the found tuples
for(i = 0; 1 < maxRows; i++)
{
// Get next tuple
BCFetchRow (mClient, "Company", " Name, Address, Phone",
i, 20, &resultRow);
// Use the retrieved tuple..
}

68

BCFetchSimVector()

BCFetchSimVector(BWClient client, const char *table,
const int32 vectorType,
const int32 contentType,
const int32 hitNo,
BCRowData_t *rowData)

Fetches a similarity vector as a tuple from the Boolware Server.

Parameters:
BW(Client client - the Boolware client instance
const char *table - table name

const int32 vectorType - type of vector requested

const int32 contentType - type of vector content requested

const int32 hitNo - the hit number of the desired tuple; First tuple is zero.
BCRowData_t rowData - returned tuple

The table name controls from which table to fetch the similarity vector.

Use the vectorType parameter to get either the query vector or the result vector. Use either
BSIM_QUERY_VECTOR for the query vector or BSIM_RESULT_VECTOR for the result
vector.

Use the contentType parameter to get the vector as terms (text) or as numeric codes. Use
either BSIM_TERM_TEXT for the actual term or BSIM_TERM_NUMBER for the numeric code.
Use the hitNo parameter to tell Boolware which row to start from within the current result. The
first row in your search result is row number zero.

Boolware will return the tuple in the rowData parameter with the two columns: "Primary Key"
and "Similarity vector".

When fetching many tuples, you are advised to use the BCSetFetchSize() function. This tells
the system to fetch more than one row per turn-around to the data source, which in turn helps to
improve performance.

NOTE! To fetch the terms as text could take long time.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCSetFetchSize(), BCRowData_t

Example:

Fetch the query vector and then fetch 25 similarity vectors from the current similarity search
result starting with the relative record 11 (NOTE, that the first record is O (zero)). The terms will
appear as numeric codes rather than text in this case.

int32 1i;
BCRowData t resultRow, queryRow;

// Get the Query vector as numeric codes
BCFetchSimVector (mClient, "Company", BSIM QUERY VECTOR,
BSIM TERM NUMBER, 0, &gqueryRow) ;

// Set maximum number of lines to fetch
BCSetFetchSize (mClient, 25);

// Get 25 similarity vectors starting from the 11th
for(i = 10; i < 35; i++)
{
// Get next tuple
BCFetchSimVector (mClient, "Company", BSIM RESULT VECTOR,
BSIM TERM NUMBER, i, &resultRow);

// Use the retrieved tuple..
// NOTE Score is a member of BCRowData t

69

}

A resultrow contains two columns; the first column contains the Primary key as
text, while the second column contains all terms for the current record. The
terms could be presented as text (words) or numeric codes (digits). The
frequency is always specified within slashes (/). In BCRowData t an element,
score (float), could be used when exporting the vectors. The Query vector does
not contain any score or Primary key. In this case the Primary key is set to:
Query Vector and the score is set to 0.0000.

Columnl (PK) Column?2 (The Similarity Vector)

Query Vector 123/2/, 213/3/, 435/1/, .. 3242/1/
143 112/1/, 123/1/, 435/2/, .. 6798/2/
22 123/3/, 213/2/, 682/4/, .. 5467/1/
7743 11/4/, 100/4/, 123/1/, .. 4798/3/
79 72/1/, 104/1/, 435/1/, .. 12455/1/

70

BCFetchTerm()
BCFetchTerm(BWClient client, BCTerm_t *ixTerm)

Fetches an index word (term) from a column.

Parameters:
BW(Client client - the Boolware client instance
BCTerm_t *ixTerm - the term

The ixTerm parameter is used as follows:

hits no. of records within your current search result where this term occurs at
least once

totalHits no. of records where this term occurs at least once

termNo not used

termType not used

term the index word (term). A zero terminated string.

The function BCStartFetchTerm() must be used before calling this function, to tell Boolware
from which table and column to retrieve terms etc.

If subzoom is active, there may occur column names within the fetched terms. These are
recognized by their "hits" element is set to -1. This means that "term" contains current column
name for the coming terms, up to the next "hits" of -1 is found. The "totalHits" element indicates
what level (zero based) and its terms have in the hierarchy.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCStartFetchTerm()

Example:

Fetch the first 25 terms from the "Name" column in the "Employee" table. Start fetching terms
alphabetically beginning from term "John" and retrieve only those terms that are found in your
current search result.

int32 i, result;

bool zoomed = TRUE;

BCTerm t term;

// Search

BCQuery (mClient, "Employee", "FIND Text:stock", &result, NULL);

// Initiate fetching index terms
strcpy(term.term, "john");
BCStartFetchTerm(mClient, "Employee", "Name", &term, zoomed);

// Fetch desired terms
for(i = 0; 1 < 25; i++)
{
// Fetch next term
if (BCFetchTerm(mClient, &term) != SOFTBOOL_ OK)
break;

// Use this term here..
}

71

BCFreeClient()

BCFreeClient (BWClient client)

Parameters:
BW(Client client - Boolware client instance

Free a Boolware client instance.

This function free the Boolware client instance created by a call to the function BCCreateClient
() and have been used throughout the entire session..

Returns:
- SOFTBOOL_OK

See:
BCCreateClient ()

Example:

BCFreeClient (mClient) ;

72

BCGetColumninfo()

BCGetColumninfo(BWClient client, const char *table,
const int32 num,
BCColumninfo_t *info)

Fetches information about a specific column.

Parameters:
BW(Client client - the Boolware client instance
const char *table - desired table
const int32 num - column index, first is zero
BCColumninfo_t *info - returned column information

The information retrieved is: the column name, indexing flags, column size, data type, if column
is part of primary key, decimal count (if numeric) etc.
Before this function can be used, it is wise to use the BCGetNumberColumns() function.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetNumberTables(), BCGetTablelnfo(), BCGetNumberColumns().

Example:
Connect to server "Charlie" and database "Company". Fetch info on all columns in the second
table.

int32 i, noTables, noCols;
BCTableInfo_t tabInfo;
BCColumnInfo t colInfo;

// Connect with "Charlie"
BCConnect (mClient, "Charlie"™, "");

// Attach to the index "Company"
BCAttach (mClient, "Company");

// Get number of tables in this database
BCGetNumberTables (mClient, &noTables);

// Check that at least two tables exist
if (noTables < 2)
Give Error Message;

// Get information about the second table
BCGetTableInfo (mClient, 1, &tabInfo);

// Get number of columns in this table
BCGetNumberColumns (mClient, tabInfo.tabName, &noCols)

// Get each column
for(i = 0; 1 < noCols; i++)
{
// Get next column
BCGetColumnInfo (mClient, tabInfo.tabName, i, &colInfo);

// Use info about this column

}

73

BCGetColumninfoEx()
BCGetColumninfoEx(BWClient client, const char *table,
const int32 num,
BCColumninfoEx_t *info)

Fetches information about a specific column.

Parameters:
BW(Client client - the Boolware client instance
const char *table - desired table
const int32 num - column index, first is zero

BCColumninfoEx_t *info - returned column information

The information retrieved is: the column name, indexing flags, column size, data type, if column
is part of primary key, decimal count (if numeric) etc.
Before this function can be used, it is wise to use the BCGetNumberColumns() function.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetNumberTables(), BCGetTablelnfo(), BCGetNumberColumns().

Example:
Connect to server "Charlie" and database "Company". Fetch info on all columns in the second
table.

int32 i, noTables, noCols;
BCTableInfo_t tabInfo;
BCColumnInfoEx t colInfo;

// Connect with "Charlie"
BCConnect (mClient, "Charlie"™, "");

// Attach to the index "Company"
BCAttach (mClient, "Company");

// Get number of tables in this database
BCGetNumberTables (mClient, &noTables);

// Check that at least two tables exist
if (noTables < 2)
Give Error Message;

// Get information about the second table
BCGetTableInfo (mClient, 1, &tabInfo);

// Get number of columns in this table
BCGetNumberColumns (mClient, tabInfo.tabName, &noCols)

// Get each column
for(i = 0; 1 < noCols; i++)
{
// Get next column
BCGetColumnInfoEx (mClient, tabInfo.tabName, i, &colInfo);

// Use info about this column

}

74

BCGetDatabaselnfo()

BCGetDatabaselnfo(BWClient client, const int32 num,
BCDatabaselnfo_t *info)

Fetches information about a specific database.

Parameters:
BW(Client client - the Boolware client instance
const int32 num - database number

BCDatabaselnfo_t *info - returned database info

The number (index) of the desired database is passed by the application in parameter num.
Boolware will return information about the desired database in parameter info.

Information retrieved is: database name, remark, status, data source name (DSN) etc.
NOTE. lItis the dsnName part of the BCDatabaselnfo_t structure that should be used in the
BCAttach() function.

It is wise to use BCGetNumberDatabases() before calling this function

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect(), BCGetNumberDatabases(), BCDatabaselnfo_t.

Example:
Connect to server "Charlie" and fetch information about all databases at this server.

int32 i, noDatabases;
BCDatabaseInfo_t databaseInfo;

// Connect with "Charlie"
BCConnect (mClient, "Charlie"™, "");

// Fetch number of databases at this server
BCGetNumberDatabases (mClient, &noDatabases);

// Get info on each database

for(i = 0; 1 < noDatabases; i++)
{
// Get info on next database
BCGetDatabase (mClient, 1, &databaseInfo);

// Use the retrieved information

}

75

BCGetErrorCode()
BCGetErrorCode(BWClient client)
Fetches the most recent error code

Parameters:
BW(Client client - the Boolware client instance

The code for the most recently occurred error (or warning) in Boolware is returned.

The code can be used to retrieve a textual message. Messages exists in two languages:
English and Swedish.

Using the error code, its textual message can be retrieved using BCGetErrorMsg().

Returns:
- the most recent error code; SOFTBOOL_OK if no error occurred.

See also:
BCGetErrorMsg().

Example:
Shows the last error message

char msg [256];
// Fetch last known error to msg
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

76

BCGetErrorMsg()

BCGetErrorMsg(BWClient client, const int32 errCode,
char *msg,
const int32 size)

Get the last Error Message.

Parameters:
BW(Client client - the Boolware client instance
const int32 errCode - the Error Code of the requested Error Message
char *msg - buffer to hold Error Message
const int32 size - size of buffer to hold Error Message

The code for the Error Message that the text should be fetched for is specified in
errCode.
The fetched text is stored in msg.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetErrorCode().

Example:
Write the requested Error Message.

char msg [256];
// Fetch the requested Error Message and put it msg
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

77

BCGetNumberColumns()

BCGetNumberColumns(BWClient client, const char *table,
int32 *num)

Fetch number of Columns in the specified Table.

Parameters:
BW(Client client - the Boolware client instance
const char *table - current Table
int32 *num - number of Columns

The name of the current Table is specified in table.
Number of Columns for the specified Table will be stored in num.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetColumninfo().

Example:
Fetch number of Columns in Table "Employees".

int32 noColumns;
// Fetch number of Columns in Table "Employees" in the attached database
BCGetNumberColumns (mClient, "Employees", &noColumns) ;

78

BCGetNumberDatabases()
BCGetNumberDatabases(BWClient client, int32 *num)

Fetch number of Boolware Index.

Parameters:
BW(Client client - the Boolware client instance
int32 *num - number Databases

Number of Databases on the connected server is stored in the num.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect(), BCGetDatabaselnfo().

Example:
Get number of Databases on the server named "Charlie".

int32 noDatabases;

// Connect to "Charlie"
BCConnect (mClient, "Charlie"™, "");

// Get number databases
BCGetNumberDatabases (mClient, &noDatabases);

79

BCGetNumberTables()
BCGetNumberTables(BWClient client, int32 *num)

Get number of Tables for selected Boolware Index.

Parameters:
BW(Client client - the Boolware client instance
int32 *num - number Tables

Number tables in the selected Database is stored in num.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetTablelnfo().

Example:
Get number tables in the Boolware Index "Company".

int32 noTables;

// Connect to server "Charlie"
BCConnect (mClient, "Charlie"™, "");

// Attach to the index "Company"
BCAttach(mClient, "Company");

// Get number of Tables in the Database "Company"
BCGetNumberTables (mClient, &noTables);

80

BCGetPerfCounters()

Note! This function is deprecated, please use the execute command perfcounters instead.

Read more in chapter 1 "Execute commands in Boolware".
BCGetPerfCounters(BWClient client, BCPerfCounters *perf)
Get all performance counters from the Boolware server.

Tips! Check out the Boolware Manager on the "Performance”-tab to see content of all the
counters.

Parameters:
BW(Client client - the Boolware client instance
BCPerfCounters *perf - information storage area

In the perf the requested information will be stored about all performance counters.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

Example:
Get performance counters from connected Boolware server.

int32 1i;
BCPerfCounters perf;

// Get all counters
BCGetPerfCounters (mClient, &perf);

81

BCGetQueryHistorylnfo()

BCGetQueryHistoryInfo(BWClient client, const char *table,
BCQHistoryInfo_t *resultinfo)

Get information about current query history.

Parameters:
BW(Client client - the Boolware client instance
const char *table - requested table

BCQHistorylnfo_t *resultinfo - information storage area

Table name table selects from which table the requested query history will be fetched.

In the resultinfo the requested information will be stored about current query history.

In the query history all queries and all results will be stored from a FIND command to the next
FIND command.

In this query history it is possible to navigate forward and backward with the commands BACK
and FORWARD.

After a call to this function a call can be done to the function BCFetchQueryHistory() to obtain
information about each line in the query history.

The information that is returned about the current query history is: total number of hits for the
qguery and current result after the query.

Normally those results are alike (total and current), but by navigate with the commands BACK
and FORWARD they can be different.

In the document Operations Guide there are some examples on the commands BACK and
FORWARD and how they will affect the query history.

Note, this information is only available if the queryhistory is enabled via
BCSetSessionIinfoXml(). If queryhistory is not enabled an error code is return when calling this
function.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCFetchQueryHistory(), BCSetSessioninfoXml(), QL-language BACK and FORWARD.

Example:
Get information about current Query History.

int32 i;
BCQHistoryInfo t queryHistory;

// Information about current Query History for table
// "Company"
BCGetQueryHistoryInfo (mClient, "Company", &queryHistory);

// Total number of query history lines and the current

// number of lines might be used to display the Query
// History via function BCFetchQueryHistory().

82

BCGetRankMode()

BCGetRankMode(BWClient client, const char *table,
int32 *rankMode)

Get current order of the retrieved lines.

Parameters:
BW(Client client - the Boolware client instance
const char *table - requested Table
int32 *rankMode - current order

The name table is the name of the requested Table.
Current order will be stored in the rankMode,
The order of the result depends on the Query, what index method used for the columns involved
in the query and if any sort command has been performed.
Following orders are available:
- order by frequency of query terms
- order by frequency of number of query terms
- order by weighted frequency of query terms
- order by weighted frequency of number of query terms
- order by sort of content
- order by similarity

A closer description of all orders are described in softbool.h.
Return:
- SOFTBOOL_OK upon success

- Error code otherwise

See also:
BCSetRankMode().

83

BCGetSessionInfo()
BCGetSessionIinfo(BWClient client, BCSessionInfo_t *info)
Get settings for current session.

Parameters:
BW(Client client - the Boolware client instance
BCSessioninfo_t *info - information about the session

In the info all settings about current session are stored.
Settings returned are:

- atext identifier to identify the session
current attached Index if any
current selected Table if any
TRUE, if automatic right truncation is active
value for word distance for proximity search
TRUE, if order is requested for proximity search

To be able to add more types of settings without modify the functions BCGetSessioninfo/
BCSetSessionlnfo there is an extended version of the function with the suffix Xml. The
extended version handles language and query history for a session.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCSetSessioninfo (), BCGetSessionInfoXml(), BCSetSessioninfoXml().

Example:
Get session settings.

BCSessionInfo t sessionInfo

// Get settings for current session
BCGetSessionInfo(mClient, &sessionInfo);

84

BCGetSessionInfoXml()

BCGetSessioninfoXml(BWClient client, char *info,
const int32 sz)

Get settings in XML format.

Parameters:
BW(Client client - the Boolware client instance
char *info - area to store settings in XML format
const int32 sz - size of info buffer

Xml tagged settings will be stored in the info buffer about the session.
A detailed description of the xml elements is found under the head line, XML elements for
session settings, in this document.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetSessionInfo(), BCSetSessionInfo(), BCSetSessioninfoXml()

XML elements for session settings.

Example:
Get current session settings

char info[512];
BCGetSessionInfoXml (mClient, &info, sizeof (info));

85

BCGetStatistics()

BCGetStatistics(BWClient client, const char table, const char column,
const int32 value,
BCStatisticsInfo_t *info)

Get statistics for the requested column. The values that are fetched are calculated from the
current query result.

Parameters:
BW(Client client

the Boolware client instance

const char *table requested Table name

const char *column requested column name

const int32 groups - upper and lower group value requested
BCStatisticsInfo_t *info - area to store the values

The parameter table and column requests from what Table
and upon what column to perform the calculation for the statistics.

In the parameter groups a value, tell what part of the result that is valid for the upper and lower
limit values; e.g. 4, select upper and lower quartile, but 5 selects the upper and lower quintile.
Valid values for groups are 3 - 8.

In the info all statistic values are stored for the requested column. Only the current query result
will be part of the statistics.

Statistic values that are calculated: number records for the statistics, the summary of all values,
arithmetic average, min value, max value, standard deviation, variance, median, most frequent
value, number of most frequent value, upper and lower limit value for selected group.

For a more detailed description of the different values see the description of the
BCStatisticsInfo_t.

To get all limit values for a specified group you should use the BCExecute. The command is
described in Chapter 1 section "Execute commands in Boolware".

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCsStatisticsInfo_t()

Example:
Retrieve all companies in the London area and get statistics about the ‘Turnover’. The upper
and lower group limit is the quintile values.

BCStatisticsInfo t statInfo;
int32 groups = 5, result;

rc = BCQuery(mClient, "Companies", "FIND City:London", &result, NULL);
BCGetStatistics (mClient, "Companies", "Turnover", groups, &statInfo);

86

BCGetTablelnfo()

BCGetTableInfo(BWClient client, const int32 num,
BCTablelnfo_t *info)

Get information about a Table connected to a Boolware Index.

Parameters:
BW(Client client - the Boolware client instance
const int32 num - relative table number
BCTablelnfo_t *info - record to store table information

The parameter num is the relative number of the requested Table.
In the record info information about the Table will be stored. The information is: the name of the
Table, current status and the last query result for this table.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect(), BCAttach(), BCGetNumberTables()

Example:
Connect to the server ‘Charlie’ and attach to the Boolware index ‘Company’. Get all tables
available in the Boolware Index and write them to the screen.

BCTableInfo_t tabInfo;
int32 num, i;

BCConnect (mClient, "Charlie", "");
BCAttach(mClient, "Company");
BCGetNumberTables (mClient, &num);

for(i = 0; 1 < num; i++)

if (BCGetTableInfo (mClient, i, &tabInfo) == 0)
cout << tabInfo.tabName << endl;

87

BCGetTableInfoByName()

BCGetTableinfoByName(BWClient client, const char *tableName,
BCTablelnfo_t *info)

Get information about a Table connected to a Boolware Index.

Parameters:
BW(Client client - the Boolware client instance
const char *tableName - the name of the table
BCTablelnfo_t *info - record to store table information

The parameter tableName is the name of the requested table.

In the record info information about the Table will be stored. The information is: the name of the
Table, current status and the last query result for this table.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect(), BCAttach(), BCGetNumberTables()

Example:
Connect to the server ‘Charlie’ and attach to the Boolware index 'Company’. Get information
about the table ‘Companylinfo’.

BCTableInfo_t tabInfo;
int32 num, i;

BCConnect (mClient, "Charlie", "");
BCAttach(mClient, "Company");

for(i = 0; 1 < num; i++)

if (BCGetTableInfoByName (mClient, "CompanyInfo", &tabInfo) == 0)
cout << tabInfo.tabName << endl;

88

BCGetVersion()

BCGetVersion(BWClient mClient, char *msg,
const int32 buffSz)

Get the current version of the Boolware Client and Boolware Server.

Parameters:
BW(Client client - the Boolware client instance
char *msg - buffer to store version
const int32 buffSz - size of buffer

Current version for the Boolware Client and Boolware Server is stored in msg.
To be able to get the version of the Boolware Server, the client must be connected to a
Boolware Server (see BCConnect()).

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect()

Example:
Get version information string

char verStr[256];
BCGetVersion (mClient, verStr, sizeof (verStr));

verStr has the following contents:

Boolware client version: major.minor.release.build CR/LF
Boolware server version: major.minor.release.build

where major, minor, release and build are digits.
Example:

Boolware client version:
Boolware server version:

CR/LF

2.1.0.4
2.1.0.12

89

BCQuery()

BCQuery(BWClient client, const char *table,
const char *str,
int32 *result,
float *qtime)

Perform a Query.

Parameters:
BW(Client client - the Boolware client instance
const char *table - requested table
const char *str - the Query, QL-string
int32 *result - buffer to store the query result
float *qtime - buffer to store the query time,

NULL if not requested

table is the name of the requested table.

The stris the actual Query. A detailed description of the query language is described under a
special head line in this document.

Number of found records is stored in the parameter result.

The actual query time is stored in the parameter gtime if supplied

In the description of the Query Language — with examples — how to obtain the Boolware query
facilities.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect(), BCAttach()
QL "Softbool Query Language"

Example:
Get number of records in the table ‘Employee’ that contains the name ‘Bob’ in the ‘Name’
column and the city ‘London’ in the ‘City’ column in the ‘Company’ database.

int32 rc, result;

// Connect to Server
BCConnect (mClient, "192.168.0.1", "");

// Attach to the index ‘Company’
BCAttach(mClient, "Company");

// The query
rc = BCQuery(mClient, "Employee", "FIND Name:bob AND City:London", &result, NULL);

90

BCReconnectIfExists()
BCReconnectlfExists(BWClient client,
const char *srv,
const char *sessName)

Connect the current session to Boolware server on requested computer.

Parameters:
BWClient client - Boolware client instance
const char *srv - name of server or |IP address, where Boolware server

executes
const char *sessName - the name of the session to be connected

Boolware Server must be running on a computer in the network, which could be reached by the
client before the connection could take place.

The parameter ‘srv’ should be the name of the computer in the network or its IP-address; for
example 192.168.0.1.

Note that the computer the client is running on must be able to access the server where
Boolware is installed.

Return:
- SOFTBOOL_OK upon success
- Otherwise error code

See also:
BCConnect(), BCDisconnect()

Example:
Connect a current session "Bob" to the server "Charlie".

char msg [256];

// Connect if exists otherwise create session "Bob" it
if (BCReconnectIfExists(mClient, "Charlie", "Bob") != SOFTBOOL_OK)
if (BCConnect (mClient, "Charlie", "Bob") != SOFTBOOL_OK)
BCGetErrorMsg (mClient, BCGetErrorCode (mClient), msg, sizeof (msg));

91

BCSetFetchSize()

BCSetFetchSize(BWClient client, const int32 fetchSize)
Set number of rows to fetch from the data source in each call.
Parameters:

BW(Client client - the Boolware client instance
const int32 fetchSize - number of rows to fetch

By fetching more than one row at a time the performance will increase. Available value is within
the interval 1 - 500. If the specified value is less than 1 it will be reset to 1. If the specified value
is greater than 500 it will be reset to 500.

Be aware of that a high value will increase the download of the network and increase the
memory allocation. The number of records will be fetched from the data source before anything
is sent back to the client and this can give a slow impression.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCFetchRow()

Example:

Set fetch size to 25, a common result table.
BCSetFetchSize (mClient, 25);

92

BCSetRankMode()

BCSetRankMode(BWClient client, const char *table,
const int32 mode)

Change the order for the result.

Parameters:
BW(Client client - the Boolware client instance
const char *table - requested table
const int32 mode - requested order

table is the name of the requested table.
The different orders depends on how the query is performed, what index methods that are used
for the queried columns and if any sort has previously been done.
Following orders are available:
- order by frequency of query terms
- order by frequency of number of query terms
- order by weighted frequency of query terms
- order by weighted frequency of number of query terms
- order by sort of content
- order by similarity

A closer description of all orders are described in softbool.h.
If no query result is available this function has no effect, there is nothing to put in a certain order.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCQuery()

Example:

Set rank mode to occurrence order for table "Employee". The result is now obtained in the
order of records that contains most query terms will come first.

BCSetRankMode (mClient, "Employee", BOCCRANK) ;

93

BCSetSessioninfo()
BCSetSessioninfo(BWClient client, const BCSessionInfo_t *info)

Change settings for current session.

Parameters:
BW(Client client - the Boolware client instance
const BCSessioninfo_t *info - record containing settings.

info contains all settings that for the current session.
Following settings are available:

- automatic right truncation ON/OFF

- word distance for proximity search

- word order for proximity search ON/OFF

To be able to add more types of settings without modify the functions BCGetSessioninfo/
BCSetSessionlnfo there is an extended version of the function with the suffix Xml. The
extended version handles language and query history for a session.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCGetSessionInfo(), BCGetSessioninfoXml(), BCSetSessioninfoXml()

Example:
Set automatic right truncation ON.

BCSessionInfo_t info;
// Get current settings
BCGetSessionInfo (mClient, &info);

info.autoTrunc = 1;

// Set new settings for session in Boolware Server
BCSetSessionInfo(mClient, &info);

94

BCSetSessioninfoXml()
BCSetSessioninfoXml(BWClient client, const char *info)

Change settings for session via XML.

Parameters:
BW(Client client - the Boolware client instance
const char *info - buffer containing XML elements info contains all settings to

change for the session.

A detailed description of the XML elements are described under the head line, XML elements
for session settings, in this document.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:

BCGetSessionInfo(), BCGetSessioninfoXml(), BCSetSessioninfo(),
XML elements for session settings.

Example:

Set query history active.

char info [512];
strcpy (info, "<softbool><session>< queryhistory all="1"/></session></softbool>");
BCSetSessionInfoXml (mClient, &info);

95

BCSort()

BCSort(BWClient client, const char *table,
const char *expression)

Sorts the query result by given column(s).

Parameters:
BWClient client - the Boolware client instance
const char *table - requested table

const char *expression - column(s) to sort

expression syntax:

<colname> [asc/desc[:nn]] [emptydata='first/last'] [sortalias='coll, col2'] [,]
where :

colname the column name to perform the sort on.

optional:

asc/desc ascending or descending; default is ascending

:nn sort the nn first at each sort request

emptydata first/last set fictive sort order if no data in column
first indicates that the empty value will be treated as sort value ascii 0
last indicates that the empty value will be treated as sort value ascii 255 default is
last

sortalias upon empty data in colname use another column to collect data that will be used
for sorting.
Up to 5 sortalias columns, comma separated, can be given i.e. if coll is empty try
next specified column col2 etc.
If column name needs quotation marks make sure to double quote if using the
same quotation mark as araound the whole sortalias expression. E.g.
sortalias='"'"'Col 1'', '"'Col 2'"'
sortalias="'Col 1', 'Col 2'"

, separates multiple sort columns

Perform a sort and the primary keys or rows will be fetched in sorted order.

The format of the parameter expression is: column name followed by order type, 'ASC',
ascending, or 'DESC', descending. By the parameter emptydata=first/last you could control
where to "sort" records that do not contain any data in the sort column; first or last. Separate
columns by a comma sign.

Default order type is 'ASC' and can be omitted. Default for emptydata is last.

If the first Column to sort on is indexed as numeric or string, you could take advantage of the
fast Boolware incremental Index Sort. By specifying the number of records to be sorted after the
column information you tell Boolware to sort just that number of records; it is not necessary to
sort a great number of records if you just want to present the top twenty.

The format of the parameter expression when incremental sort: column order:n, where order is
asc or desc and n a number.

Note It is only the Boolware incremental Index Sort that could take advantage of the specified
number of records to be sorted.

The type of sort algorithm chosen is determined by Boolware. See Chapter 11 Interactive Query
section "Rank by Sort" in the Boolware Operations Guide for detailed information.

96

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

Example 1:
Order current result in the table ‘Employee’ in column sort order: ‘Name’ ascending and ‘Age’
descending. Get primary keys in sorted order; the primary key is the column ‘ID’.

int rc, i, recNo, rankMode;
float score;
char key [128];

// Sort by name ascending and age descending
rc = BCSort (mClient, "Employee", "Name, Age DESC emptydata=first");

// Get PK in sorted order
if (rc == SOFTBOOL_OK)
{
// Get PK for the 25 first records
for(i = 0; 1 < 25; i++)
{
BCFetchKey (mClient, "Employee", "ID", i, key, sizeof(key), &score, &recNo,
&rankMode) ;
// Store PK in a list for later use pkList->Add (key);
}

Example 2:

A query has generated 2.725.389 hits and you want to get the 25 persons with the highest
salary.

Sort the result in the table ‘Employee’ on the column ‘Salary’ descending (the highest salary at
top). Fetch the primary keys for the first 25 records.

As the column ‘Salary’ is indexed as numeric the Boolware incremental Index Sort will be used.
Specify in the sort command that only 25 records should be sorted.

This split into two parts: in the first part you specify the query and determines the sort attributes,
while you in the second part browse in the result set. This is to show that Boolware only "sort"
when it is necessary to save system resources.

Part 1:

Perform query and determine sort attributes:

int rc, i, recNo, rankMode;
float score;
char key [128];

// The query
rc = BCQuery(mClient, "Employee", "FIND City:London", &result, NULL);

// Sort by salary descending; only sort the first 25 records
rc = BCSort (mClient, "Employee", "Salary DESC:25");

// Get PK in sorted order
if (rc == SOFTBOOL_OK)
{
// Get PK for the 25 first records
for(i = 0; 1 < 25; i++)
{
BCFetchKey (mClient, "Employee", "ID", i, key, sizeof (key), &score, &recNo,
&rankMode) ;
// Store PK in a list for later use pkList->Add(key);
}

Part 2:

97

Continue to fetch records 75 to 100:

int rc, i, recNo, rankMode;
float score;
char key [128];

// Note that you do not need to do any query or sort this time; Boolware will
automatically
// sort the records that need to be sorted.

// Get PK for the records 75 - 100 in sorted order
for(i = 74; 1 < 100; i++)

{

BCFetchKey (mClient, "Employee", "ID", i, key, sizeof (key), &score, &recNo,
&rankMode) ;

// Store PK in a list for later use pkList->Add(key);

}

Note that no query or sort is performed; Boolware will automatically sort the records that need to

be sorted. In this case Boolware will sort records 26 -100; the records 1 - 25 was already sorted
in Partl.

98

BCStartFetchTerm()

BCStartFetchTerm(BWClient client,

const char *table,
const char *col,
const BCTerm_t *startTerm,
const bool zoomed)

Prepare Boolware Server to fetch index terms.

Parameters:
BWClient client - the Boolware client instance
const char *table - requested table
const char *col - requested column
const BCTerm_t *startTerm - start term
const bool zoomed - TRUE if only terms within current result

table contains the requested table name and col contains requested column for the index terms.

The parameter col could have some more information: type and order. Type could be term or
count; if no type is specified term will be in effect. term means that the index terms should be
fetched in alphabetical order while count means that they should be fetched in frequency order.
Frequency in this context means the occurrence in number of records in the table. The order
could be ascending, asc, or descending, desc. Order has only meaning when the type is count;
when the type is term the terms will always be fetched in ascending alphabetical order.
Subzoom is activated by using more than one column in col, separated with parenthesis
between levels, and comma within the same level. Refer to section about subzoom in
"Operations Guide".

Choose start position in the index tree by startTerm. Empty string starts from the beginning of
the index tree. You could specify a term, a term number or an index type depending on the
index function chosen.

The parameter startTerm->term could hold a sub-command, where you specify the type of index
term to fetch; word, string, phonetic etc. These sub-commands are the same as those used in
the Boolware Query Language when you want to query a special index type. Valid sub-
commands are: string(), reverse(), sound(), stem(), frequency() and searchterms(). If the sub-
command searchterms is used there must be a special table designed for statistics on Query
terms (see detailed description in "Operations Guide"). In the structure BCTerm_t the element
termType you could set the index type instead of using the sub-command. See chapter
"Execute commands in Boolware" and command "indexex" for a list of valid values.

If zoomed is activated, TRUE, only terms within the current searched result will be fetched.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms".

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCFetchTerm()

Example 1:
Get 25 terms and start from the term nearest "Charlie" in the column of ‘Name’ in the table
‘Employee’. Get all terms not just zoomed ones.

BCTerm t term;
int i=20;

99

// Initiate term to start from
strcpy(term.term, "Charlie");
term.termtype = 1; // Indexing method is word

// Initiate fetch of terms
BCStartFetchTerm(mClient, "Employee", "Name", &term, false);

// Get next 25 terms
while (i++ < 25)
{
// Get next term; break if no more terms
if (BCFetchTerm(mClient, &term) != SOFTBOOL OK)
break;

// Print the hit count and the term
print term.hits;
print term.term;

}

Example 2:

Get the 25 most used Query terms during the period 11.00 - 13.00 the 16th of June 2005. The
Query terms should be presented in descending order; the most common Query terms first. In
this case it is word (not stings) that should be fetched. The special table containing the Query
terms for statistics is named QueryTerms and the column holding the query terms is called
Terms.

BCTerm_t term;
int i =0;

// Initiate the time interval from which the statistics should be fetched
strcpy(term.term, "searchterms (20050616 11:00..20050616 13:00)";
term.termtype = 1; // Indexing method is word

// Initiate fetch of terms
BCStartFetchTerm(mClient, "QueryTerms", "Terms", &term, false);

// Get the 25 most common query terms for the specified period
while (i++ < 25)
{
// Get next term; break if no more terms
if (BCFetchTerm(mClient, &term) != SOFTBOOL_OK)
break;

// Print the hit count and the term
print term.hits;
print term.term;

}

Example 3:

Get the 25 most common terms and present them in descending order; the most common terms
first. Only terms with the indexing method word should be fetched. The table, Articles, from
which the terms should be fetched contains 10.000.000 records. The column you are interested
in, Text, contains 20.000.000 unique terms. To make the extract of terms much more efficient
you should limit the extract to terms that are contained in more than 50.000 records.

BCTerm t term;

int i=0;

// Set limit

strcpy (term.term, ">50000";

term.termtype = 1; // Indexing method is word

// Initiate fetch of terms
BCStartFetchTerm (mClient, "Articles", " [Text] count desc", &term, false);

100

// Get the 25 most common terms
while (i++ < 25)
{

// Get next term; break if no more terms
if (BCFetchTerm(mClient, &term) != SOFTBOOL OK)
break;

// Print the hit count and the term
print term.hits;
print term.term;

}

Example 4:
Get number of phonetic terms that are stored in the column Name in the table Companies.

BCTerm_t term;

// Initialize to get number of phonetic terms
strcpy (term.term, "4"); // Index type phonetic

term.termtype = 18; // Index function; get number of terms for specified Index
type
BCStartFetchTerm (mClient, "Companies", "Name", &term, false);

// Get number of phonetic terms in column Name; there is only one entry to
fetch
if (BCFetchTerm(mClient, &term) != SOFTBOOL OK)

print term.hits;
print term.term; // Specifies the Index type

Example 5:
Get 25 strings starting from term number 12.000.

BCTerm t term;
int i=0;

// Initialize fetching strings starting from string number 12.000
strcpy (term.term, "12000";
term.termtype = 23; // Index type string

// Initialize fetching strings
BCStartFetchTerm (mClient, "Artiklar", "[Text] count desc", &term, false);

// Get the 25 requested strings
while (i++ < 25)

{
// Get the next string
if (BCFetchTerm (mClient, &term) != SOFTBOOL OK)

break;

print term.hits;
print term.term;

}

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

101

BCXmIRequest()

BCXmIRequest(BWClient client, const char *request,
BCXmIReply_t *reply)

Request and answer in xml-format.

Parameters:
BW(Client client - the Boolware client instance
const char *request - the xml request

BCXmIReply_t *reply - pointer to the xml reply and length of the reply

This function will execute a whole series of commands specified in the xml request.
The request is formed by different xml elements and their attributes, see chapter 3 XML API for
a detailed description of the xml elements.

Return:
- SOFTBOOL_OK upon success
- Error code otherwise

See also:
BCConnect ()

Example:

Get number rows containing the name ‘Bob’ and lives in the city of ‘London’ in the table
‘Employees’ in the database ‘Company’. Get the column data for ‘Name’ and ‘City’ from the first
two records found. Maximum 50 characters from each column.

int32 xmlReq[512], rc;
BCXmlReply t reply;

// Connect to Boolware Server with session name ’xml’
BCConnect (mClient, "192.168.0.1", "xml");

// Build the xml request
strcpy (xmlReq,
"<?xml version=\"1.0\" encoding=\"iso-8859-1\" 2> \
<SoftboolXML requests> \
<SoftboolXML request type=\"query\">\
<open_session name=\"\" queryhistory=\"0\"/>\
<database name=\"Company\"/>\
<table name=\"Employees\"/>\
<query> FIND Name:Bob AND City:London </query>\
<response type=\"\" href=\"\" queryhistory=\"0\">\
<records from=\"1\" count=\"2\" maxchars=\"50\">\
<field name=\"Name\"/>\
<field name=\"City\"/>\
</records> </response>\
</SoftboolXML request> \
</SoftboolXML requests>");
// Send the request to Boolware Server
rc = BCXmlRequest (mClient, xmlReq, &reply);

// Reply contains now a pointer to the reply and the length of the reply
<?xml version="1.0" encoding="iso-8859-1" ?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>xml</session>
<records total="19" from="1" to="2" rank="no rank">
<record score="1.000">
<field name="Name">Smith Bob</field>
<field name="City">LONDON</field>
</record>
<record score="1.000">
<field name="Name">Jonson Bob</field>
<field name="City">LONDON</field>
</record></records></SoftboolXML response></SoftboolXML responses>

102

BCXmIRequestNoResponse()
BCXmIRequestNoResponse(BWClient client, char *request)
Performs an XML request with an automatic connection to Boolware server.

To fetch the retrieved data the method BCFetchRow should be used.

Parameters:
BW(Client client - The Boolware client instance
const char *request - The XML request

Return:

- SOFTBOOL_OK upon success
- Error code otherwise

103

XML elements for session settings

Each session can have their own unique settings concerning:

Language

Automatic right truncation

Word distance for proximity search

If terms has to occur in specified order for proximity search (0 = order; 1 = ignore order)
Threshold for similarity search

If user-written plugins should be used when generating search terms

Activate or deactivate the Query History

Type of encoding; valid values are: ANSI and UTF-8

ONoOoOrWNE

Language can be selected by the application to select messages in different languages for
different users.

Automatic right truncation means that all query terms given will be truncated i.e. all terms that
begin with the given term will match the query. E.g.: FIND car will match carport, cars, cart etc.

Word distance for proximity search. This means that the sub command near can specify number
of "other" words between the ones in the actual query. E.g. FIND near(tiny cottage,3,0) means,
two (2) words might exists between tiny and cottage and still get a match. Records like the

following are allowed: "tiny red cottage", "cottage that is tiny", "tiny cottage", but "tiny boy and
red cottage" will not be allowed, there are three (3) "other" terms between the specified ones.

If terms has to come in a specified order means that the terms has to appear in that order in the
record to give a match.

E.g. FIND near(tiny cottage,3,1) will match the following: "tiny cottage", "tiny red cottage", "tiny
old red cottage", but the following will not match: "cottage is tiny".

A special case is when search as a string:
FIND near(tiny cottage,1,1) will only match when "tiny cottage" appears in the text.

Similarity search means that the query is not done for specific terms but the query is done for
the content. After a query the result can be as much as 80 —90 % of the database. The records
are sorted by its similarity due to the reference text. The records that will appear at the end of
the list are not similar to the reference text at all — maybe just 0.002 -, but will be retrieved
anyway. To avoid records that has no similarity with the reference text specify a threshold value
between 0.0 and 1.0. All records with lower score than the threshold value will be treated as no
match and will not be part of the result.

E.g. Threshold is set to 0.5.

FIND sim(reference text...), ignore all records below the score of 0.5000.

By setting the element indexexit you could activate a user-written plugin that generates
additional search terms. These terms together with the search terms generated by Boolware will
be used when searching.

E.g. FIND SL500, if you only use Boolware generated search terms you will only find records
containing the word SL500; not SL 500 or 500 SL. A user-written plugin could generate
additional search terms: SL and 500, which means that you will find records containing the
words: SL500, SL 500 or 500 SL. Moreover you could specify you query in three different ways
and get the very same result: FIND SL500, FIND SL 500 or FIND 500 SL. If you only want
records containing the word SL500 you just turn this element off.

Query history means that result of all queries between the FIND command will be stored in the
server. Within the query history it is possible to navigate with the commands BACK and
FORWARD. This option will bind extra resources to the session and therefore it can be turned
ON or OFF.

By specifying the encoding element you could tell Boolware how to communicate with the
application; if you specify ANSI, Boolware expects that everything coming from the application is

104

in ANSI and everything that leaves Boolware is in ANSI. The same thing is valid when the
encoding is UTF-8. If no encoding is specified, ANSI will be used.

In the document Operations Guide the functions sim, near, BACK and FORWARD are
describe with examples.

In the future it is possible that further settings will be introduced. To achieve a flexible way of
handling session settings in the system XML element will be used for new settings.

The following XML elements are available:

<softbool>
<session name="lang=" encoding=" sessiontimeout=" maxexecutiontime=">
<languages/>
<search trunc=" proxgap="proxorder=" vsmthreshold=" indexexit=" strictasis=" />
<queryhistory all="/>
<database name=">
<table name="/>
</database>
</session>
</softbool>

Attribute for the session element

name Session name read only
encoding Requested character encoding
lang Current language code

sessiontimeout The current session timeout
maxexecutiontime The current execution timeout

Data for the language element
All possible language codes separated by blank read only

Attribute for search element

trunc 0 truncation off and 1 for truncation on
indexexit 1 means that the corresponding plugin function will generate
additional

search terms. 0 means that only search terms that are part of the text
should be used.

proxgap Word distance for proximity search

proxorder Word order for proximity search. 0 any order 1 given order
vsmthreshold Lowest threshold value. A value between 0.0 — 1.0

strictasis 1 means that strict asis is active and will treat ordinary wildcard

characters, *’, *?, I’ and ‘# as ordinary characters in the
subcommands wordasis() and stringasis(). Default is 0; not active.

Attribute for the queryhistory element
all 0 query history off or 1 query history on

Attribute for the database element
name Name of attached Boolware Index read only

Attribute for the table element
name Name of table(s) for attached Boolware Index read only

105

Example:
1. Set encoding to UTF-8 and error message in English
2. Set right truncation on, proximity gap three words and words in order
3. Activate query history

bw set settings xml ($link, "<softbool>
<session encoding=\"UTF-8\" lang=\"en\">
<search trunc=\"1\" proxgap=\"3\" proxorder=\"1\"
strictasis=\"0\"/>
<queryhistory all=\"1\"/></session>
</softbool>");

106

Chapter 3
XML/JSON API

This chapter describes in detail how to communicate with Boolware Server via a XML/JSON
protocol. Here it is described how to achieve the functionality described in chapter 2.

Introduction

To achieve a more flexible communication with Boolware Server a XML/JSON protocol is
available. For a complete description see the XMLSchema and JSONSchema in the install
directory.

This protocol can be seen as a complement to the functional API described in chapter 2.

This is a strict script based API based upon XML/JSON elements. For JSON-requests the API
function execute should be used.

The protocol is divided into two parts: request and response.

The request is actually built up by two parts: what to do and how to receive the result.
In the first part of the request you tell the system what you want to do: search via Boolware
Index server, list index terms etc.

In the second part of the request (element 'response’) you describe how the result should be
obtained: how many records, what record to start from, in what order, query history, statistics
etc.

The response is a XML/JSON document were different elements and their attributes contains
different parts of the response.

Although the Boolware system is based upon an interaction between the client and the server it
is important for a user to be able to do a refinement of a query or listing the result from an earlier

query.

By a unique session identifier which is either specified by the user or by the system, a unique
session is created within the Boolware Server. This session identifier is always returned in the
element ‘session’ in the response and can then be used in the attribute ‘name’ for the element
‘open_session’ in a later request or query refinement.

This is called a session in the Boolware Server and makes it possible for a user to stay alive in
the Boolware Server even if the physical connection is closed by the browser.
Depending on the connection to the Boolware Server the first connection can take some time.

The documentation has the following structure:
1. Description of the request; all elements and their attributes are described with short

examples. For a complete description of all elements, see the XMLSchema or
JSONSchema files.

2. Description of the response; all elements and their attributes are described with short
examples.
3. Complete examples how to use this API in different cases.

107

How to call via "web" (http)

The protocol supports the WEB-server IIS 5.0 and later for the Windows platform and Apache
2.x for Linux.

The request follows the standard HTTP protocol for a POST command, (GET is ignored with an
error message), which makes it easy to write effective scripts to take advantage of the search
capabilities in the Boolware Server.

The default number of xml clients that could be connected at the same time is 100. This value
could be changed via the environment variable bwxmlclients to a suitable value.

The web server must be stopped and started before the new value takes effect.

Note:
All elements and their attributes must be written and used as described below. The elements
are case sensitive, so be careful with upper and lower case letters.

For XML, some characters are reserved by XML, and must be coded as so called "entities".
Those are: amp (&), less than (<), greater than (>), quotation mark (") and apostrophe (’). When
these letters occur in the text they have to be coded as follows: & -> &, < -> <, > -> >,
" -> " and ’ -> '.

It is not always necessary to specify both the query and the response in a request. Sometimes
only a query and the number of hits is of interest to be able to refine the query, there is no need
for the response part (element 'response’). Sometimes just a list of records is of interest. You do
not need to supply the query (element ‘query’) and the sort (element ‘sort’) again to get the next
part of the result list.

Mandatory elements - except the XML header for XML request — are: "SoftboolXML _request,
‘database’ and 'table’.

XML Schema definition Softbool XMLRequests/Softbool XMLResponses

When installing Boolware you will receive two XML schema definition files which describes all
elements that are defined in a Boolware XML request and Boolware XML response. The files
Softbool_XMLRequest.xsd and Softbool XMLResponse.xsd is stored in XMLSchema which is
a subdirectory to the directory where the Boolware Clients are stored.

JSON Schema definition SoftboolJSON_requests/SoftboolJSON_responses

When installing Boolware you will receive two JSON schema definition files which describes all
properties that are defined in a Boolware JSON request and Boolware JSON response. The
files SoftboolJSON_requests.json and SoftboolJSON_responses.json is stored in JISONSchema
which is a subdirectory to the directory where the Boolware Clients are stored.

These two schemas are tested against NJSONSchema (for C#) and jsonschemaZ2pojo (for
Java) to generate classes from each schema. Note that all attributes are prefixed with a'@"' in
the JSON-request/JSON-response and the content of a element when attributes exists are
stored in the element ‘#text'.

For NJSONSchema (C#), you need to adjust the name of variables generated according to the
example below:

// Dervied schema property name generator
public class CMySharpPropertyNameGenerator : CSharpPropertyNameGenerator

{

public override string Generate (JsonProperty property)

108

var str = base.Generate (property):;
return str.Replace ("#", " "); // replace # (e.g. #text) to double
underscores
}
}

public void RequestSchema2Classes|()
{
// Read schema from file
var schema = JsonSchemad4.FromFileAsync ("SoftboolJSON requests.json") .Result;

// Setup namespace and create my own property name generator

var settings = new CSharpGeneratorSettings();

settings.Namespace = "boolwarejsonrequest";
settings.PropertyNameGenerator = new CMySharpPropertyNameGenerator () ;

// Create "schema to class" generator
var generator = new CSharpGenerator (schema, settings);

// Generate classes
var file = generator.GenerateFile();

All the examples below refers to XML-request and XML-response but the same can be done
with JSON-requests and the response will default be JISON-responses. One important issue is
the encoding of the request. In the XML-request there is a header that tells the encoding format
e.g. <?xml version="1.0" encoding="iso-8859-1"7?> thisindicate that the entire
request is encoded in "1ISO-8859-1" which also is the default value for a XML-request. But in a
JSON-request the default value is "UTF-8". This can be given in an attribute on the first element
in the request and is named '@encoding' if it differs from "UTF-8".

109

Request
XML

Every request must start with the standard XML head:
<?xml version="1.0" encoding="iso-8859-1"7?>

The only approved encodings are: UTF-8 and is0-8859-1.
The request and the response will always have the same encoding.

A request contains different XML elements with their attributes.

<SoftboolXML requests>
<SoftboolXML request type=query/execute/index/metadata>
<dtdref type= name= sysid= pubid= >
<open_session name=(string)>
<database name=(string) dsn=(string)>
<table name=(string) >

<index field= start position= max_ terms=(int) zoom=(no/yes) type= >

<query [flow=(name)] [gtime=0/1]>
<(fieldname) >text</ (fieldname)> / (QL-string)
</query>

<metadata database= table= field= >
<execute></execute>

<response type= href= queryhistory=1/0 [raw= fieldsep= rowsep= quotes=]>
<sort expression=(string)>
<records from=(int) count=(int) rank=(int) maxchars=(int)>
<field name=(string) formula=(string)/>
</records>
<simvectors from=(int) count=(int) content= />
<statistics column= group= onall= getallvalues= >
</response>

<flow>
;}flow>
</SoftboolXML request>
<SoftboolXML request type=query/execute/index/metadata>
another request

</SoftboolXML request>

</SoftboolXML requests>

All XML-elements in a request are described in the file Softbool XMLRequest.xsd which is
described above.

JSON

The only approved encodings are: UTF-8 and is0-8859-1.
The request and the response will always have the same encoding.

A request containing different JSON elements and their attributes:

{
"@encoding": "iso-8859-1",
"SoftboolJSON request": [
{

"Qtype": "query/execute/index/metadata",

110

"dtdref": {

H@type" AL ,

"@name": "",

"@Sysid": "",
wn

"Qpubid":
b
"open session": {
"@name":
b
"database": {
"@name":
b
"table": {
"@name":
b
"index": {
"@field":

nn
’

"(string)"

"(string)"

"(string)"

"@start position": "",

"@max_terms":
"Qzoom":
"Qtype":
b
" query" : {
"Qflow":
"Qgtime":

"O/l",

" (name) "'

" (ll’lt) n,
"(no/yes)",

v
4

"fieldname": "text"
b
"metadata": {
"Qdatabase": "",
"@table": "",

"Qfield":
b
"execute": {

"#text": "V
b
"response": {

"@type": "",

"Qhref":

"@queryhistory":

nn
’

"@fieldsep": "",
ll@rowsep" : mn ,
ll@quotes": "",

"sort": {
"@expression":
b
"records": [{
"@from":
"Q@count":
"@rank":
"@maxchars":
"field": [{
"@name":
"@formula":
}]

1
"simvectors": {
"@from":
"Q@count":
"@content":

b

"statistics": [{

"@column": "",
" @grOup" : mnu
"@Onall": llll,

"Qgetallvalues":

1y
"flow": |

"1/0",

"(string)"

"(int)",
"(int)",

"(int)",

"(int)",

"(string)",
'(string)"

n (lnt) n’
" (lnt) n,

111

}
s
{
"@type": "query/execute/index/metadata"

. another request

}

All JISON-elements in a request are described in the file SoftboolJSON_request.json which is
described above.

What to do in the request

In this part of the request you specify what Boolware Server should do. The following elements
are available: SoftboolXML_request/SoftboolJSON_request’, 'open_session’, ‘close_session’,
‘database’, 'table’, 'index’ and ‘query’.

Several Requests

A ’SoftboolXML_requests' element or an array of 'SoftboolJSON_requests’ could hold several
Requests. See example at end of this chapter.

Request type

There are different types of requests, which is specified in the attribute 'type’ of the element
‘SoftboolXML_request/SoftboolJSON_request’.

Allowed types are:

Type Explanation

query Ordinary query to the Boolware Server specified with the QL syntax (see
Softbool Query Language).

execute Followed by other commands.

index Gets a list of index terms from Boolware.

metadata Gets a description of tables and columns from Boolware.

A request always starts with the root element ‘SoftboolXML_request with the requested type.

<SoftboolXML request type="query">
</SoftboolXML request>

If the type is ‘query’ or ’index’, the following information must be given:

<open_session name=""> </open session>
<database name=""> </database>

<table name=""> </table>

<query> </query>

. or .

<index=> </index>

If the request type is ‘execute’ the following information must be given:
<open_session name=""> </open session>
<execute></execute>

112

If the request type is ‘'metadata’, the following information must be given:
<open session name=""> </open session>
<metadata database="" table="" field=""/>

When the query type is flow (type="flow’), there is a more complete description with examples in
Chapter 4 "Flow Queries".

Queries

Here is an example of a fairly simple query. A search for names that sound like "charter" within
Zip code area "11230".

<SoftboolXML request type="query">
<database name="dbl"/>

<table name="tabl"/>

<gquery>

FIND "name":sound(charter) and "zip":11230
</query>

</SoftboolXML request>

Open a session

A connection to the Boolware Server is called a session.

In the element 'open_session’ you can specify the attributes: ‘name’, ‘autotrunc’, ‘server’,
‘terminate’, lang’, ‘queryhistory’, ’setsearch’, ‘querylimvalue’ and ’indexexit’.

name:

The value that is specified must be unique so it does not get mixed with another session in
further calls to Boolware Server. If no value is specified the Boolware Server will create a unique
session identifier that shall be used with further calls to Boolware Server for this session.

This attribute is only valid if the xmiclient is running as an extension to Apache 2.x or IIS. In all
other clients the session name must be set using the function connect().

autotrunc:

This attribute should be set to "1", if automatic right truncation is required. This means that all
terms starting with the given term will match the query. Value "0" means no right truncation.
Default value is "0".

server:
This attribute shall contain the name of the server that host the Boolware Server. Either a
computer name or an IP address. If no value given, the environment variable 'SERVER_NAME
will be used. This attribute is only valid if the xmiclient is running as an extension to Apache 2.x
or lIS. In all other clients it is the function connect() which tells the Boolware server to connect
to.

terminate:

This attribute tells the Boolware Server to terminate the session or keep alive after this request.
If "1"is specified, the session will be terminated in the Boolware Server and all old queries will
be lost. If not supplied default is "0". This attribute is only valid if the xmlclient is running as an
extension to Apache 2.x or IIS. In all other clients it is the function disconnect() that shuts down
the connection to the client. The connection to Boolware is closed if terminate is set to "1".

lang:

This attribute tell the Boolware Server in what language error messages will be produced. The
language code follows the internet standard: ‘en’ for English, ‘sv’ for Swedish etc.

113

There has to be a corresponding message file containing messages at the Boolware Server
location. The installation package contains two different message files: one English and one
Swedish. Default is ‘en’.

queryhistory:

Query history contains all queries between two FIND commands. In the query history it is
possible to navigate with commands BACK and FORWARD. If the value "1" is specified the
query history is activated. Default is "0"

setsearch:

Activate or deactivate set-search. Set-search will automatically save all queries and results
during a search session with the names "S1", "S2"... "Sn". These saved results can be used in
the Boolwares query language as ordinary query terms. The can be listed with the element
‘'execute’ see section "Set-search”.

Set-search is a requires a lot of resources and should not be activated if not needed.
If "1" is specified, set-search is activated, default is deactivated.

querylimvalue:

Sets a global limit used by the sub-command querylim. If the number of hits for a term is higher
than this value the term will not be part of the query (handles like a stop word). The global limit
could temporarily be overridden by a values set in queryoptions or directly in the querylim sub-
command. After the current query the global limit will be in effect again.

indexexit:

If set to other value than zero it indicates that custom indexing should be used when querying.
Boolware contains three built in custom indexing exits: Split, Shrink and LinkWords. In the
manual "Boolware Operations Guide" Chapter 14 "Custom indexing" you get a detailed
description on how and when to use these exits.

To close down a session use the element 'close_session’ with the attribute ‘name’. Specify
value of ‘name’to the session name obtained in the ‘session’ element in the response.

<open_session name="usrl" autotrunc="1" server="srvl" terminate="0" lang="sv"
queryhistory="1"> </open session>
<close session name="usrl"> </close_ session>

Automatic right truncation is required, keep session, "usrl" alive in the Boolware Server, error
messages in Swedish and activate the query history.

Specify database

The Boolware Index to query is given in the attribute ‘'name’ in the element ‘database’. Further
one attribute is available, ‘dsn’.
<database name="dbl" > </database>

Specify table

Specify the table for the query in the attribute ‘name’in the element ‘table’.
<table name="tabl"/>

Fetch index terms

114

The type 'index’ in the element 'SoftboolXML_request/SoftboolJSON_request’ in the request will
fetch index terms.

The response from this request are the searchable terms that are in the specified column. The
following attributes are valid in the element ‘record": ‘field', 'total', ‘allixtypeterms',
'resultixtypeterms’, 'ixtypeterms’, 'zoom', 'statistics’, 'numeric' and 'totdocs'.

The name of the column from which index terms have been fetched is stored in the attribute
‘field". The attribute ‘field' could have additional information: presentation type and order. Two
different presentation types are valid: term (default), when the terms should be presented in
alphabetical order and count when the terms should be presented in frequency order (no. of
occurrences). There are two directions: asc and desc. If no order is specified the terms will be
presented in ascending order.

The total number of index terms fetched are stored in the attribute 'total'. It is mostly equal to
number of requested terms (max_terms) but could be less if not more are available.

If you have requested the total number of index terms for all index types, this is obtained in the
attribute "allixtypeterms'.

If the total number of index terms has been requested for given index type, it is stored in the
attribute 'resultixtypeterms'. This number tells how many index terms there are totally for this
request. If 'zoom' (see below) has been specified in the request the total number of index terms
within the current result will be stored else the total number of index terms for the specified
index type will be stored.

If you - when using 'zoom' in the request - also request the total number of index terms for the
specified index type it will be stored in the attribute 'ixtypeterms'. The attribute 'ixtypeterms' will
always hold the total number of terms for the given index type. If no 'zoom', the value in
'resultixtypeterms' and 'ixtypeterms' will be the same.

If a'zoom' request the attribute 'zoom' will be set to "yes".

If a 'statistics' request the attribute 'statistics' will contain the chosen statistics method (sum,
max, min, mean/avg).

If the current column contains numeric data the attribute 'numeric' will be set to "yes".

If a 'totdocs' request has been performed the attribute 'totdocs' will hold the total number of
records in the current table.

There will be one element 'record’ for each fetched index term containing the following
attributes: 'term’, 'count’, 'tothits', ‘termnumber’, ’abstermnumber’ and 'selected'.

In the attribute 'term' the current index term will always be stored.

The attribute 'count’ will hold the number of records the current term is contained in. If the
attribute 'zoom' is specified in the request only records contained in the current result are
counted. This attribute is always filled in.

The attribute 'tothits' holds the number of records the current term is contained in the complete
index. If no 'zoom', 'count' and 'tothits' contain the same value. This attribute must be asked for
in the request.

The attribute 'termnumber' holds the sequence number of the current index term in the last
result while 'abstermnumber’ always holds the absolute number in the total index for this index
type. If no 'zoom' in the request, 'termnumber' and 'abstermnumber" will always be the same for
the index term until an update or load is performed. If 'zoom' is requested, ‘termnumber’ is the
current sequence number for the current index term in the current result. 'abstermnumber’
always holds the same number each term regardless of the query.

115

The following attributes are valid in an index request: 'field', ‘max_terms', 'start_position’, 'type’,
‘zoom', 'zoomresult', 'tothits’, ‘continuation’, 'allixtypeterms', 'resultixtypeterms', 'ixtypeterms',
‘statistics’ , 'order’, ‘termnumber’, ‘freqtype’, ‘freglimits’, 'sepgroups’, ‘keepzeroterms’,
'skipgeneratedterms', 'selected’, 'totdocs', 'reportaction’, ‘reporttemplatename’,
'levelformaxrecords’, and 'maxrecords'.

Some attributes - ‘field’, 'type', 'start_position', max_terms', 'zoomresult', ’statistics’, 'order’,
‘freqtype’, 'reporttemplatename’, ‘levelformaxrecords’, 'reportaction' and 'maxrecords' - should
contain a value while other attributes - 'zoom’, 'tothits', 'allixtypeterms', 'resultixtypeterms’,
'ixtypeterms', ‘termnumber’, ‘'sepgroups’, ‘keepzeroterms’, ‘continuation’, 'skipgeneratedterms'
and 'selected' - are activated by "yes".

The only attribute that has to be specified is "field', which tells from which column the index
terms should be fetched.

The attribute 'type' tells which index type (word, string phonetic etc.) should be fetched. The
attribute 'type' could also indicate another function (a complete description of the approved
types could be found in Chapter 1 "Execute commands in Boolware" and section "indexex")

In the attribute 'start_position' you could specify where in the index you want to start fetching
index terms. If you specify a word or a start of a word the system finds the closes term in the
index to start from. You could also start from a sequence number by specifying that in the
'start_position'. To be able to decide if it is a sequence number or a word (a word could also be
a number) you have to set the proper 'type'. If the attribute 'start_position' is omitted or set to
empty string the fetch of index terms will start from the beginning or end depending on the value
of ‘order".

In the attribute 'max_terms' you specify how many index terms you want. If omitted the default
number of terms is set to 50. The maximum number of index terms to be fetch in one request is
1.000. If you want more use the 'continuation' attribute.

By specifying the attribute 'zoom' you will just get index terms that belong to records in the
current result. All other attributes will be handled as when fetching index terms from the entire
index.

The attribute 'zoomresult' is very much connected to the 'zoom' attribute. In this attribute you
specify from which result you want to fetch index terms. Three different results are valid: the
current result, a result from a saved result and the current result in named scratch result. If
omitted the current result is used. The name of the saved result uses that result to get the
proper index terms. To get index terms from a named scratch result, e.g. named 'address', you
should specify zoomresult="scratch(address)"

The attribute 'tothits' is most usable when 'zoom' is active. When you have got the number of
occurrences for the current term in the current result saved in 'count’ you could get the number
of occurrences in the entire index for the current term in 'tothits'. If no 'zoom', the value in 'count'
and 'tothits' is the same.

Using the attribute ‘allixtypeterms’ indicates that you want the total number of index terms for all
index types.

If the attribute 'resultixtypeterms' is active the total number of terms for the current index type
(specified in 'type") will be returned. If 'zoom', only terms within the current result will be counted.

The attribute 'ixtypeterms' means that you want the total number of terms in the entire index

regardless of any result for the given index type. If no '‘zoom', the value in 'resultixtypeterms' and
'ixtypeterms' is the same.

116

In the attribute ’statistics’ you could get statistics on the lowest level in a subzoom request. The
following statistics are valid: sum (sum of all values), max (the highest value), min (the lowest
value) and mean/avg (the average value).

In the attribute 'order' you determine the order (ascending or descending) the index terms
should be fetched. The value in 'order' should be "asc" for ascending and "desc" for descending.
If omitted the order will be ascending.

If the attribute ‘termnumber” is active each term will contain sequence numbers. Two values:
‘termnumber’ and 'abstermnumber’ will be fetched. The "abstermnumber’ is always the same
and gives the absolute order number of the term within the current index type. The ‘termnumber’
is dependent on 'zoom'. If 'zoom' is activated the ’abstermnumber’ will be the order number of
the current term within the last result.

In the attribute 'freqtype' you specify the type (word, string, phonetic etc.) you want to fetch
when the index terms should be in concurrency order rather than alphabetic order (‘type'="14").

In the attribute ‘freqglimits' you should specify a condition for the terms to extract when sorting
terms on occurrence (type="14"). The condition could be: < (less than), > (greater than) or =
(equal to) a specified number of records the terms should appear in. For example
freglimits=>100000 means that only terms that appears in more than 100.000 records will be
fetched.

If the attribute 'sepgroups' is activated it means that the index terms within the current result
should be separated. Terms within the result should be fetched first and terms not within the
result should be fetched after. Compare this to the attribute ‘keepzeroterms’ where terms within
the result and the other terms are listed together in alphabetic order. This attribute is only valid if
the attribute 'zoom' is activated.

If the attribute ‘keepzeroterms’ is activated it means that all index terns will be fetched. The
terms within the result will be listed with the appropriate hitcount, while the terms not in the
result will be listed with hitcount set to zero. All terms will be fetched in alphabetic order.
Compare this to the attribute ‘sepgroups’ where terms within the result and the other terms are
listed in separate groups. This attribute is only valid when the attribute ‘zoom’ is active.

Note:
The attributes ‘sepgroups’ and ‘keepzeroterms’ could never be active at the same time. If so an
error message will occur.

The attribute 'continuation' means that you continue from the latest fetched index term.

Read more about the values for the attribute 'type' in the chapter "Execute commands to
Boolware" and the command "indexex".

Get maximum 10 index terms from coll start from term AAA. Only strings should be fetched and
should be within the current search result.

<index field="Ort" start position="B" max terms="10" zoom="yes" type="2"
tothits="yes">
</index>

Response:

<records field="City" total="10" zoom="yes">

<record term="BALTIMORE" count="23" tothits="23192"/>
<record term="BARCELONA" count="12" tothits="14367"/>
<record term="BELGRADE" count="9" tothits="11333"/>
<record term="BERLIN" count="17" tothits="20101"/>
<record term="BERN" count="8" tothits="12876"/>
<record term="BIRMINGHAM" count="44" tothits="65323"/>
<record term="BONN" count="11" tothits="14593"/>
<record term="BOSTON" count="21" tothits="23876"/>
<record term="BRUSSELS" count="12" tothits="13586"/>

117

<record term="BUDAPEST" count="9" tothits="11984"/>
</records>

Get the maximum number of employees by Cities on the current result.

<index field="City (Employees)" type="2" max terms="12" statistics="max"/>
</index>

Response:

<records field="ort ([Antal anstdllda])" total="108" statistics="max">
<record term="City" count="-1"/>

<record term="BALTIMORE" count="64363"/>
<record term="Employees" count="-1"/>
<record term="101760" count="1"/>
<record term="City" count="-1"/>

<record term="BOSTON" count="51157"/>
<record term="Employees" count="-1"/>
<record term="87994" count="1"/>

<record term="City" count="-1"/>

<record term="BERLIN" count="48966"/>

<record term="Employees" count="-1"/>
<record term="67855" count="1"/>
</records>

Attributes for "Extended statistics between several Boolware indexes".

If the attribute 'skipgeneratedterms' is activated, all strings generated by a plugin function will be
skipped.

The attribute 'selected' tells that each term should contain the attribute 'selected'. If the value on
a term is "yes" the term was selected when the last 'reportclose’ was performed else it should
contain "no". If 'selected' is omitted or set to "no" no 'select’ attribute will appear on the listed
terms.

The attribute 'reportaction' should contain one of three values: 'open’, 'close' and 'save'.

The value 'open' opens one index at a time in the named reporttemplate ("report") and reads
corresponding files that tells which terms were marked at last 'reportclose’. Requested number
of terms are fetched for all indexes that belongs to the current reporttemplate (“report"). If
'selected' is activated all terms for those indexes will get the attribute 'selected'. If the current
term was marked at the last 'close' 'selcted' will be set to "yes" else it will be set to "no". There
should be one call for each involved index. The value 'close’ closes one index at a time for the
current reporttemplate ("report") and saves marked terms in memory. There should be one call
for each involved index. The value 'save' saves the saved marked terms for all indexes in a file
for later use (the next reportaction=""open" for this report).

The attribute 'reporttemplatename' tells which reporttemplate (“report”) to be used.
In the attribute 'levelformaxrecords' you should specify the level that should contain a maximum
of 'maxrecords' records. Normally that is the lowest level - the level on which the requested

'statistics' is performed - that should only contain e.g. the 5 "best" values.

The attribute 'maxrecords' tells how many records the 'levelformaxrecords' could contain at a
maximum.

Below you will find an example of the records that are created when using report templates. The
general idea is that the records should be used as input to programs that could present the
statistics graphically.

Example 1:

118

The table Companies contains geographical and economic information on companies. A report
template, CityNameTurnover, has been created and contains the following information: First
dimension: City, Second dimension CompanyName and Column for aggregation value:
Turnover. You want statistics on turnover per company within a city. In the below example you
have chosen to aggregate against the current result (zoom=yes) and the statistic method is the
sum (sum). In order to get only the three "best" companies from the cities that have the highest
turnover you specify maxrecords=3. In this example you are just interested in companies in the
three cities: Chicago, Washington and Seattle.

The XML request look like this:
<?xml version="1.0" encoding="ANSI"?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open_session name=""/>
<database name="Companies"/>
<table name="Companies"/>
<query>FIND City:Chicago OR Whasington OR Seattle</query>
<response/>
</SoftboolXML request>

<SoftboolXML request type="index">

<database name="Companies"/>

<table name="Companies"/>

<index

field="City (CompanyName (Turnover))" zoom="yes" type="2"

max_terms="36" statistics="sum"
skipgeneratedterms="yes" reporttemplatename="CityNameTurnover"
levelformaxrecords="3" maxrecords="3">

</index>

</SoftboolXML request>

</SoftboolXML requests>

Gives the following response:

<records field="City (CompanyName (Turnover))" total="36" zoom="yes"
statistics="sum">

<record term="City" count="-1" level="0"/>

<record term="CHICAGO" count="1" level="0"/>

<record term="4287216143749000" count="1" level="0"/>
<record term="CompanyName" count="-1" level="1"/>

<record term="THE BOEING COMPANY" count="1" level="1"/>
<record term="52457000000" count="1" level="1"/>

<record term="CompanyName" count="-1" level="1"/>

<record term="CLEAR FUSION INC" count="1" level="1"/>
<record term="42000000000" count="1" level="1"/>

<record term="CompanyName" count="-1" level="1"/>

<record term="BANK ONE CORPORATION" count="1" level="1"/>
<record term="20724000000" count="1" level="1"/>

<record term="City" count="-1" level="0"/>

<record term="WASHINGTON" count="1" level="0"/>

<record term="1247678562124000" count="1" level="0"/>
<record term="CompanyName" count="-1" level="1"/>

<record term="UNITED STATES POSTAL SERVICE" count="1" level="1"/>
<record term="68529000000" count="1" level="1"/>

<record term="CompanyName" count="-1" level="1"/>

<record term="MARRIOT INTERNATIONAL INC" count="1" level="1"/>
<record term="10099000000" count="1" level="1"/>

<record term="CompanyName" count="-1" level="1"/>

<record term="DANAHER CORPORATION" count="1" level="1"/>
<record term="6889301000" count="1" level="1"/>

<record term="City" count="-1" level="0"/>

<record term="SEATTLE" count="1" level="0"/>

<record term="698742198197000" count="1" level="0"/>
<record term="CompanyName" count="-1" level="1"/>

<record term="WASHINGTON MUTUAL INC." count="1" level="1"/>
<record term="15962000000" count="1" level="1"/>

<record term="CompanyName" count="-1" level="1"/>

<record term="NORDSTROM INC" count="1" level="1"/>

119

<record term="7131388000" count="1" level="1"/>
<record term="CompanyName" count="-1" level="1"/>
<record term="AMAZON.COM INC" count="1" level="1"/>
<record term="6921124000" count="1" level="1"/>
</records>

The response should be interpreted in the following way:

‘term’ is the current "term"”. If ‘count’ is -1 the current term is the Column name. In the
aggregated column - in this case - turnover the aggregated value - in this case -
the sum is the value in 'term".

‘count’ if 'count' is -1 it indicates that 'term' contains the Column name, else the number of
occurrences of the current 'term’.
'level’ is the current 'level'. The highest level (the first field) is O (zero).

Each complete record on each level is built up of a number of records.

This is the records for level O:
In the first record the contents of 'term' should be regarded as a Column name as the 'count'=-1.
In this case the Column name is City.

The second record contains the current 'term' and its count for this level. In this case the 'term'
is Chicago and there is only one city Chicago.

The third record contains the aggregated value - in this case the sum - of all turnover in all
companies in Chicago.

The following are the records for level 1 under the current level 0 (City is Chicago):
In the first record the contents of 'term' should be regarded as a Column name as the 'count'=-1.
In this case the Column name is CompanyName.

The second record contains the current term and its count for this level. In this case the term is
a company named "THE BOEING COMPANY" and there is only one (‘count'=1) company with that
name in Chicago.

The third record contains the aggregated value - in this case the sum - of Turnover for all
companies hamed "THE BOEING COMPANY". In this case there is only one company with that
name and the sum is the same as the Turnover for this company.

As you have specified that you only want the three "best" companies (the ones with the highest
turnover for each city) only: "THE BOEING COMPANY", "CLEAR FUSION INC" and "BANK ONE
CORPORATION" will be presented for Chicago.

After this the three "best" companies in Washington will be presented and last the three "best"
companies in Seattle will be presented.

When presenting statistics graphically in the application it could be convenient to do the
searching via the indexes instead of via an ordinary search form.

In a search form you usually show the searchable fields and the end user fills in all search
arguments in the corresponding search fields. When searching via indexes you present the
content of those indexes that appears in the search form. The end user then marks the terms
(search arguments) that should be part of the query in the different indexes. Boolware will the
use the indexes and "zoom" a result in each of them based on the current search result.

Assume that you have four indexes that you want to use for this purpose: State, City, CmpName
and Turnover. At start the first N (e.g. 20) terms in all indexes are shown. When you mark for
instance Washington in the index for State only cities, company names and turnover from
records in the state Washington will be presented. The presented terms could also contain
number of occurrences: number of occurrences in the current result is always returned and the
number of occurrences in the total table will be returned if tothits is set to 'yes'.

120

You could continue to mark more terms in the index State to increase the number of terms in all
indexes (equivalent to the operator OR) or you could mark terms in another index to reduce the
number of terms in all index (equivalent to the operator AND). Instead of only present the terms
that are part of the current result you could specify an attribute (sepgroups) so that all terms
within the current result will be presented first and all other terms after these "found" terms.
Another way to see all terms is to use the attribute ‘keepzeroterms’ where all the terms are
listed in alphabetic order; the terms within the result has a proper hitcount while the hitcount for
the terms not within the result is set to zero.

Below is an example of the XML request:

Example 2:

In this example Alaska (the 2nd term in this index) is marked in the index State and we want all
terms that is part of the current result should be presented before all other terms in all indexes.
You could use the sub command when searching for Alaska. This command picks up the proper
term - by using the absolute termnumber - from the specified index and performs an ordinary
search.

All indexes are "zoomed" against the result and the terms that are part of the result will be
presented first in each index followed by the terms that are not part of the current result. This is
controlled by the attribute sepgroup=yes. The start term (start_position) is specified by term
number (type=23). Only the first 10 terms are fetched (max_terms). You want both the relative
and the absolute term number (termnumber=yes), the terms that are marked (selected=yes),
the total number of terms (resultixtypeterms=yes), the total number of records (totdocs=yes) and
you want to skip all strings generated by a plugin function (skipgeneratedterms=yes).

<?xml version="1.0" encoding="ANSI"?>
<SoftboolXML_requests>

<SoftboolXML request type="query">

<open_session name=""/>

<database name="Companies" />

<table name="Companies"/>

<query>FIND "State":searchviaindexnogen (2)</query>

<response />

</SoftboolXML request>

<SoftboolXML request type="index">

<database name="Companies" />

<table name="Companies"/>

<index field="State" start position="1" max terms="10" zoom="yes" type="23"
sepgroups="yes" termnumber="yes" selected="yes" resultixtypeterms="yes"
totdocs="yes" skipgeneratedterms="yes">

</index>

</SoftboolXML request>

<SoftboolXML request type="index">

<database name="Companies"/>

<table name="Companies"/>

<index field="City" start position="1" max terms="10" zoom="yes" type="23"
sepgroups="yes" termnumber="yes" selected="yes" resultixtypeterms="yes"
totdocs="yes" skipgeneratedterms="yes">

</index>

</SoftboolXML request>

<SoftboolXML request type="index">

<database name="Companies"/>

<table name="Companies"/>

<index field="CmpName" start position="1" max terms="10" zoom="yes"
type="23" sepgroups="yes" termnumber="yes" selected="yes"
resultixtypeterms="yes" totdocs="yes" skipgeneratedterms="yes">

</index>

</SoftboolXML request>

<SoftboolXML request type="index">

<database name="Companies"/>
<table name="Companies"/>

121

<index field="Turnover" start position="1" max terms="10" zoom="yes"
type="23" sepgroups="yes" termnumber="yes" selected="yes"
resultixtypeterms="yes" totdocs="yes" skipgeneratedterms="yes">
</index>
</SoftboolXML request>
</SoftboolXML requests>

Gives the following response:

Index State:

<records field="State" total="10" resultixtypeterms="54" zoom="yes"
totdocs="100321260">

<record term="ALASKA" termnumber="1" abstermnumber="91" count="108686"
selected="yes"/>

<record term="ALABAMA" termnumber="2" abstermnumber="82" count="0"
selected="no"/>

<record term="ARIZONA" termnumber="3" abstermnumber="369" count="0"
selected="no"/>

<record term="ARKANSAS" termnumber="4" abstermnumber="370" count="0"
selected="no"/>

<record term="CALIFORNIA" termnumber="5" abstermnumber="777" count="0"
selected="no"/>

<record term="COLORADO" termnumber="6" abstermnumber="1132" count="0"
selected="no"/>

<record term="CONNECTICUT" termnumber="7" abstermnumber="1153" count="0"
selected="no"/>

<record term="DELAWARE" termnumber="8" abstermnumber="1247" count="0"
selected="no"/>

<record term="DISTRICT OF COLUMBIA" termnumber="9" abstermnumber="1272"
count="0" selected="no"/>

<record term="FLORIDA" termnumber="10" abstermnumber="1543" count="0"
selected="no"/>

</records>

The response should be interpreted in the following way:

The first row tells which index (field) the terms belong to, total is the total number of fetched
terms, resultixtypeterms tells how many terms there are in the current result, zoom means that
terms will be presented according to the current result and finally totdocs gives the total number
of records in the entire table.

The first term that will be presented is ALASKA, where termnumber is the relative order number
within the result, abstermnumber is the absolute order number within this index, count tells how
many records there are that contain Alaska and finally selected is 1 means that the term is
marked.

None of the following terms are part of the result which is indicated by count equals 0.
Moreover, none of these terms have been marked; selected is set to 0. The relative order
number, termnumber, and the absolute order number, abstermnumber, are set on all terms.

Index City:

<records field="physical town city name" total="10" resultixtypeterms="241"
zoom="yes" totdocs="100321260">

<record term="AKIACHAK" termnumber="1" abstermnumber="3016" count="22"
selected="no"/>

<record term="AKIAK" termnumber="2" abstermnumber="3017" count="13"
selected="no"/>

<record term="AKUTAN" termnumber="3" abstermnumber="3122" count="14"
selected="no"/>

<record term="ALAKANUK" termnumber="4" abstermnumber="3313" count="42"
selected="no"/>

<record term="ALEKNAGIK" termnumber="5" abstermnumber="4168" count="31"
selected="no"/>

<record term="ALLAKAKET" termnumber="6" abstermnumber="4647" count="18"
selected="no"/>

122

<record term="AMBLER" termnumber="7" abstermnumber="6192" count="18"
selected="no"/>

<record term="ANAKTUVUK PASS" termnumber="8" abstermnumber="6693" count="23"
selected="no"/>

<record term="ANCHOR POINT" termnumber="9" abstermnumber="6792" count="392"
selected="no"/>

<record term="ANCHORAGE" termnumber="10" abstermnumber="6793" count="39119"
selected="no"/></records>

The response should be interpreted in the following way:
The first row should be interpreted in the same way as the first row for index State above.

All terms that are presented are part of the result since count is greater than 0. The relative
order number, termnumber, and the absolute order number, abstermnumber, are set on all
terms. No term has been marked since the selected is 'no' on all terms.

The other indexes int the request: CmpName and Turnover will be presented in a similar way.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms". There is also a section "Extended statistics between several
Boolware indexes" that describes the use of report templates.

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

Search in a database/Boolware Index

Select type of query by specifying ‘query’ in the attribute 'type’ in the element
SoftboolXML_request/SoftboolJSON_request’.

Type ‘query’ means to query against the Boolware Index.

The syntax for the type ‘query’, Softbools Query Language (QL), is described in Chapter 1
"Softbool Query Language".

The following attributes could be used in the <query> element: ‘flow’, 'trace’, ‘qtime’ and
‘resultbitmap’.

In the attribute 'flow' you specify the name of a flow that should be executed. Normally the query
request contains: commands, search arguments and operators, but when this attribute is
specified the given parameters will be run through the named Flow. See Chapter 4 Flow
Queries below.

In the <query> element, the attribute 'trace' can be used together with the attribute 'flow' if the
<scoring> element has been used in the flow. If the attribute 'trace' is enabled (1 = on and 0 =
off, default setting), the <trace> element in the <SoftboolXML_response> will describe how the
scoring was performed by the <scoring> element in the flow.

If the attribute 'time' has been activated the execution time for the current query request will be
returned.

When using the type ‘query’ you can omit the actual query to avoid a re-search if only the next
part of a result list should be displayed.

<SoftboolXML request type="query">
<database name="database"/>

123

<table name="table"/>
<response>
<records from="101" count="100">
<field name="*"/>
</records>
</response>
</SoftboolXML request>

The response

The response part of the request describe what kind of information that will be received from the
Boolware Server: number of records, what record to start from, what order of the records, query
history, statistics etc.

What information that will be obtained is dictated by elements and their attributes.

The following attributes are available: ‘response’, ‘dtdref’, ‘sort’, ‘records’, field’ and ‘statistics’.

How to display the result

The element, response’, have the attributes: ‘type’, ‘href’, ‘raw’, ‘queryhistory, ‘time” and
‘outputformat’.

The ‘raw’ attribute is a bit special, in that it changes the Boolware response format. This means
that fetched tuples, and index terms, will be returned in tab separated format instead of XML.
The intention is to return a format which is easier and faster to parse, than standard XML would
be.

If both ‘type’ and ‘href’ have values, there will be a XML "style sheet" element in the response
part with following look:

<?xml-stylesheet type="type" href="href"?>

immediate after the leading XML header:

<?xml version="1.0" encoding="iso-8859-1"7?>

By using the attribute 'outputformat' you can change the format of the complete response. Valid
values are "xml" or "json". If the request is in XML and you set outputformat="json", the
response will be delivered in JSON format. If the request is in JSON and you set
"@outputformat":"xml" , the response will be delivered in XML format.

If ‘queryhistory’is set to "1", the query history will be fetched if it is activated. Default is "0".

If time’is set to "1", a time element will be produced in the response indicating the thread time

an overall time for the request. Default is "0".

Connect XML-response to an extern DTD

In the element, ‘dfdref’, an extern file can be specified that contains a document definition, DTD,
and it will be included in the response.

The element, ‘dtdref’, have four attributes: 'sysid’, ‘type’, 'name’ and ‘pubid’.
The system identification for the DTD is given in the attribute ’sysid’ and is specified as an URI.

An URI is either a complete filename or an URL. If this attribute is empty or is missing, no DTD-
reference element is created in the XML-response.

124

The attribute ‘fype’ can have one of two values: PUBLIC or SYSTEM,; default is SYSTEM. If
PUBLIC is given, a descriptive name can be specified in the ‘pubid’ for this DTD.

The attribute ‘name’ should contain the name of the root element, if no value is given the root
element is assumed to be "SoftboolXML_response’.

The last attribute, pubid’, is an explaining text for this DTD stored if the attribute ‘type’ has the
value PUBLIC.

If the element, ‘dfdref’, is present and the attribute ’sysid” has a value, the Boolware Server will
create a ’'DOCTYPE’ element in the response.

Examples:
<dtdref sysid="c:\my.dtd" type="SYSTEM"/>
will generate the following response from the Boolware Server:

<!DOCTYPE SoftboolXML response SYSTEM "c:\my.dtd">
<dtdref sysid="c:\my.dtd" type="PUBLIC" pubid="DTD for Company database"/>

will generate the following response from the Boolware Server:

<!DOCTYPE SoftboolXML response SYSTEM "c:\my.dtd" pubid="DTD for Company
database">

Sort the result

If a special sort order is requested use the element 'sort’. The element has one attribute
‘expression’, were to put the columns to sort upon and what order ascending/descending. The
columns will be sorted in specified order. If the column name contains special characters it has
to be quoted. The order within each column is given by the suffix "asc" for ascending and
"desc" for descending. Default is ascending if omitted. By the parameter emptydata=first/last
you could control where to "sort" records that do not contain any data in the sort column; first or
last. Separate columns with a comma sign (,). A special attribute ‘coordinatedistance’ could be
used as a sort element. It means that the retrieved records will be sorted on a distance from the
given position.

A maximum of 20 sort elements (column names) could be given in a sort request.

Syntax for 'expression’:
<sortelement1>[, < sortelement2> ... < sortelement20>]

< sortelement>
<column name>|<coordinatedistance> <order> <emptydata>
< column name> the specified column must be part of the current table
<coordinatedistance="<latitude value>;<longitude value>;<columnl>;<column2>;
< latitude value> latitude value (proper format) where to start calculation
< longitude value> longitude value (proper format) where to start calculation

<columnl> name of the column containing the latitude values
<column2> name of the column containing the longitude values
<order> ‘asc’ (default) ascending or 'desc’ descending
<emptydata> ‘last’ (default) tells that all records that has no value will be put last

for this column; ‘first’ tells that they will come first
If the first Column to sort on is indexed as numeric or string you could take advantage of the

very fast Boolware incremental sort. If you have a large number of records in your result and
just want to present the one hundred first after a sort, you could specify that number in the sort

125

command and Boolware will interrupt the sort after 100 records. See description and more
examples in Chapter 2 "API description” section BCSort() above.

Example:
<sort expression="columnl asc emptydata=first, column2 desc"/>

The result will be viewed sorted ascending on columnl and descending on column2. No data in
columnl will "sort" these records first.

Incremental sort:
<sort expression="columnl asc:100"/>

The current result will be presented sorted on the contents of columnl ascending, but only the
100 first records will be sorted. To take advantage of this fast sort the column must be indexed
as string or numeric.

Distance sorting:

<sort expression="coordinatedistance=""N 59 20 43.42"; "E 17 57
54.65"; Latitude; Longitude;""/>

The retrieved records will be sorted on the distance from the given position (N 59 20 43.42; E 17
57 54.65); the closest will be sorted first. As the format is WGS84, the values have to be quoted.
The name of the columns don’t contain any special characters and thus need not be quoted.
Note that the order must be latitude/longitude both when giving the start position and when
specifying the column names. Each entity must be ended by a semicolon (;); even the last one.

<sort expression="coordinatedistance="6582497; 1622891; coordinates(long, lat); ;
squot;"/>

In this case both coordinates are contained in the same column (coordinates) and you have to
specify in what order they appear (long, lat). If no order is specified the order will be: lat, long.
Note that an "extra" semicolon must be specified for the "missing" column name.

Which records should be fetched and in what order

The element 'records’, contains the following attributes: 'from’, 'count’, ‘rank’, ‘maxchars’,
‘tablename’, 'sortexpression’ and 'scorescale’.

The attribute from’ give the relative start of the records to be fetched and the attribute ‘count’
specify number of records to fetch. To improve performance a restriction of maximum records to
fetch in one call is set to 500 (see also Chapter 2 API description section BCSetFetchSize()).

If any particular order is requested — other than the data source -, a value can be set in the
attribute ‘rank’. The order is based upon how many times the query terms occur in the record. If
the value is set to "1" or "occurrency", the order is calculated by the occurrence of the query
terms. The value "2" or "frequency" order the records by frequency; frequency in this context is
the number of occurrences divided by number of terms in the record. The order can be affected
by giving the query terms different weights. When calculated, the weight is multiplied with the
occurrence of the term. This will affect the order for occurrence and frequency. The attributes for
this orders are: "6" or "weightedoccurrency" for weighted occurrence and "7" or
"weightedfrequency" for weighted frequency. If a fuzzy search have been performed the
records can be fetched in fuzzy-order i.e. records with lowest string distance will be sorted first.
The attribute for this order is "10" or "fuzzy". See example in the Softbool Query Language in
Operations Guide. If "0" or no value is given, the records will appear in the order they will be
fetched from the data source.

126

In the attribute ‘maxchars’ the maximum number of characters that will be fetched from each
column. If "0" is specified the entire column value will be fetched. Default is "0".

When more than one table have been involved in the search - global search or relate - it could
be convenient to be able to present the result from several tables in one request. By using the
attribute ‘tablename’ the result from the tables involved in the search could be fetched.
Moreover a sort attribute ‘sortexpression’ could be specified for each table.

In the attribute 'scorescale’ you could specify the wanted number of decimals for the score
value. Valid values are: 0 - 7. If no value or a non-valid value is specified the number of
decimals will be 3.

Example 1:
<records from="12" count="40" rank="occurrency" maxchars="20"/>

In this example fetch 40 records and start from record number 12 in the current result. Order by
occurrence and just the 20 first characters from each column should be fetched.

Example 2:

<records from="12" count="40" maxchars="20" tablename="table3"
sortexpression="column4 desc"/>

<field name="*"/>
</records>

<records from="12" count="40" rank="occurrency" maxchars="20"

tablename="table5" sortexpression=""/>
<field name="*"/>
</records>

In this example fetch 40 records and start from record number 12 in the current result. The
records should be sorted in descending order depending on the content in column4 when the
result is fetched from table3. The records should be ordered by occurrence when fetched from
tableb. In both cases only 20 characters for each field should be fetched.

Select columns to fetch

The element ‘field” have three attributes: ‘name’, ‘formula’ and ‘dataenclosedelement’.

In the attribute ‘name’ the name of the requested column is specified and is mandatory.
The attribute formula’ is used only to specify a calculating formula for a nonexistent column
specified by ‘name’. If 'formula’ is omitted or empty, field will be treated as an ordinary ‘field’

element.

The attribute ‘dataenclosedelement’ is used when you want to enclose field data within a
specified element name (see example under section Lookup below).

The element "field’ can be repeated within the ‘records’ element to obtain data from more than
one column at a time.

Example:

<records from="12" count="40" rank="frequency" maxchars=20>
<field name="columnl"> </field>
<field name="column6"> </field>

127

<field name="column2"> </field>
<field name="Sum" formula="columnl + column2"/>
</records>

In this case 40 records are requested with start from the relative record number 12 from the
current result. Order the records by frequency of the query terms. Fetch the first 20 characters
from the columns: columnl, column6 and column2. One column with a calculated value of the
sum of columnl and column2 as column "Sum".

Calculate and fetch statistics

The element ’statistics’ have four attributes: ‘column’, ‘groups’, 'onall' and 'getallvalues'. The
attribute ‘column’tells what column to perform the statistic calculation upon and the attribute
‘groups’ tells in how many groups the result should be divided.

The attribute ‘column’ must contain an existing column in the database and should be numeric.
‘groups’ gives the upper and lower group values 3 — 100.

If the attribute 'onall' is set to 1 the calculation will be performed on all records in the table rather
that on the current result.

If the attribute 'getallaviues' is set to 1 you will get all limit values for the current group.

Example:

Get statistics for the column "Solidity" and all the limit values for the specified group (5). The
statistics should be calculated on the current result (companies in Stockholm). Get statistics for
the column "Liquidity" and all the limit values for the specified group (10). In this case the
calculation should be performed on all records in the table.

Request:
<?xml version="1.0" encoding="ANSI"?>
<SoftboolXML_requests>
<SoftboolXML request type="query">
<open_session name="" queryhistory="1"/>
<database name="Companies"/>
<table name=" Companies "/>
<query>FIND City:Stockholm</query>
<response queryhistory="1" type="" href="">
<statistics column="Solidity" groups="5" getallvalues="1"/>
<statistics column="Liquidity" groups="10" onall="1" getallvalues="1"/>
</response>
</SoftboolXML request>
</SoftboolXML requests>

Response:
<?xml version="1.0" encoding="iso-8859-1" 2>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0" databasename="Fdretag"
flowexit="" >
<session>MySession</session>
<records total="64428" tablename="Company">
</records>
<gueryhistory total="1">
<queryitem result="64428" intermediate="64428">FIND City:Stockholm</queryitem>
</queryhistory>
<statistics column="Solidity" tablename="Company" groups="5" onall="0">
<statistic name="count" value="38283"/>
<statistic name="modecount" value="3095"/>
<statistic name="mode" value="100.000000"/>
<statistic name="sum" value="-779180537.840000"/>
<statistic name="avg" value="-20353.173415"/>
<statistic name="min" value="-425099700.000000"/>
<statistic name="max" value="1326.410000"/>

128

<statistic name="std" value="2396790.246590"/>
<statistic name="var" value="5744603486147.931600"/>
<statistic name="median" value="38.870000"/>
<statistic name="upper" value="82.435000"/>
<statistic name="lower" value="9.500000"/>
<statistic name="groups" values="9.500000, 27.825000, 51.435000, 82.435000/>
</statistics>
<statistics column="Liquidity" tablename="Foretag" groups="10"
onall="1">
<statistic name="count" value="217869"/>
<statistic name="modecount" value="63"/>
<statistic name="mode" value="100.000000"/>
<statistic name="sum" value="610811992.529998"/>
<statistic name="avg" value="2803.574591"/>
<statistic name="min" value="-35215300.000000"/>
<statistic name="max" value="161918100.000000"/>
<statistic name="std" value="424165.974683"/>
<statistic name="var" value="179916774079.192990" />
<statistic name="median" value="123.810000"/>
<statistic name="upper" value="538.960000"/>
<statistic name="lower" value="33.890000"/>
<statistic name="groups" values="33.890000, 60.820000, 83.630000,
103.610000, 123.810000, 149.970000, 191.260000, 272.360000,
538.960000/>
</statistics>
</SoftboolXML response>
</SoftboolXML responses>

Fetch Similarity vectors

The element ’simvectors’ have three attributes: ‘from’, ‘count’ and ‘content’.

The attribute ‘content’ tells the type of term to fetch from a retrieved record, the term as text or
the term as a numeric code.

The value of the attribute can be either ‘numeric’ or ’text’. Default value is ‘numeric’.

The attribute ‘from’ gives the starting point of the retrieved records and the attribute ‘count’is the
number of records to fetch.

Example:
Fetch similarity vectors for the first 10 records in numeric codes.

<simvectors from="1" count="10" content="numeric"/>

Execute

The element ‘execute’ is used to perform commands described in Chapter 1 "Application
development" section "Execute commands in Boolware".

The syntax of the ‘execute’ element is:
<execute> command and its parameters </execute>

The syntax for each command is described in Chapter 1.

A response part, ‘execute_response’ is connected to the ‘execute’ element in which the
response from the current command is saved (the Set Search commands are treated in a
different way which is described below).

<execute response>
response from the current command
</execute response>

129

The saved result could be very different depending on the specified command. Some
commands just saves a 0 or 1 while other commands save a lot of data. In Chapter 1 the
different commands and their output are described in detail. The response is not formatted at
all.

Example:
The test database Northwind contains a lot of tables with relations. The database is described in
"Operations Guide" Chapter 11 "Interactive Query" under section "Related search (Join)".

The example below shows how to use an XML script to make an efficient Join.

If you want to find out which customers (Customs) in the US that have ordered the product:
"Uncle Bob's Organic Dried Pears" or the product "Alice Mutton". The following query could be
specified in Boolware:

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML requests>
<SoftboolXML request type="execute">
<open_sessiog name="Userl" queryhistory="1"/>
<database name="Northwind"/>
<table name=" "/>
<execute>

relate (Customers)

FIND Customers.Country:usa

ANDF Products.ProductName: (uncle bob organic dried pears) OR (alice
mutton)
</execute>
<response quervhistory="1" type="" href="">

<sort expression=""/>

<records from="1" to="25" maxchars="0" tablename="Products"
sortexpression="Productname desc">
<field name="ProductID"/>
<field name="ProductName"/>
</records>
<records from="1" count="25" maxchars="0" tablename="Order Details"
sortexpression="">
<field name="*"/>
</records>

</response>

</SoftboolXML request>
</SoftboolXML requests>

The above XML script will retrieve the 6 requested records. Note that the result is fetched from
two of the involved tables: Products and Order Details. Order Details is not specified in the
query but to relate the search result from table Products to table Customers you have to go via
table Order Details.

Set Search

The element ‘execute’ is used for set-search, review saved queries, save query and delete
saved query. The various commands are described in Chapter 1 under the heading "Execute
commands in Boolware".

Fetch metadata

The element ‘'metadata’ has three attributes: 'database’, ‘table’ and ‘field’.

130

The attribute ‘database’ hold the requested database to fetch meta data from. The name of the
requested database or ™’ for all databases.

The attribute ’table’ hold the requested table to fetch meta data from. The name of the table or
" for all tables within requested database.

The attribute ‘field’ hold the requested field to fetch meta data from. The name of the requested
field or * for all fields within the requested table and database.

The attributes ’table’ + field’ can be omitted and the attribute ‘field’ can be omitted.

Example: Fetch all of databases available and their attributes:

<metadata database ="*"/>

Example: Fetch all tables from the database ‘Company’ and their attributes.
<metadata database ="Company" table="*"/>

Example: Fetch all fields available and their attributes from database ‘Company’ and table

‘Employee’.

<metadata database ="Company" table="Employee" field="*"/>

Response from Boolware Server

The specified response in the response part of the request will be sent as a XML coded

document.

It always starts with a XML Header: <?xml version="1.0" encoding="is0-8859-1"?> and is

followed by the following start element "Softboo/XML_responses’.

A Response will always have the same encoding (UTF-8 or is0-8859-1) as the Request.

A response is formatted as XML/JSON, except for the special case of "“raw" responses. Below
all the elements and their attributes are described:

XML element
SoftboolXML_responses
SoftboolXML_response
SoftbooJSON_response
session

records

record

records

record

records

record
field

gueryhistory
queryitem

simvectors
statistics

statistic

Attribute

type, error_code
type, error_code

field, total

term, count

total, from, to, rank
score

total

name, ctime, database, result
name

total

result, intermediate
from, to, content
column, groups, onall,

groupvalues
name, value

131

Description

Start of complete response
Start of response

Start of response

The current session records
Response when type ‘index’
Record when type ’index’
Response when type ‘query’
Record when type ‘query’
Response when type
‘execute’

Record when type ‘execute’
Current Column in record
when type ‘query’

Number of rows in the
Query History

Total result and result for the
current query

Similarity vectors

Statistics for the specified
Column on the current result
A named statistic method

and its value

execute_response Data from an ‘execute’
command

save, review, delete type, total, name, database, ctime, result Elements in the response
when type is ‘execute’

time thread, total Time specification for the
request

metadata See below Meta data about databases

tables and fields

The contents in the response part varies depending on:

1. Whether the request was successful
2. The type of the request ("index" or "query")
3. What is specified in the 'response’ element

Was the request successful or not

The element "SoftboolXML_responsel/SoftboolJSON_response’ has the following attributes:
‘type’ and ’error_code’.

The attribute ‘type’ holds the request for this response. The ’type’is specified in the element
‘SoftboolXML_request/SoftboolJSON_request’ and could contain one of the following values:
"index" or "query".

In the attribute ‘error_code’ the outcome of the request is denoted; "0" means success, while a
negative value means failure. If an error has occurred an element ’error’is generated, where the
current error message is stored.

In some cases the request could generate a warning, which will be notified in the element
‘warning’. This element has an attribute 'warning_code’, where the warning code (a positive
value) is followed by the warning message.

A very important element in the response from Boolware Server is ’session’. This element holds
the unique session identification. The session identification could explicitly be specified in the
request or it could be generated by Boolware. Regardless how the unique session identification
was created this session identification should be used to communicate with Boolware.

Example:

<SoftboolXML response type="query" error code="-112">
<session>Userl</session>
<error>End Interval Term missing</error>
[<warning warning code=></warning>]

</SoftboolXML response>

In this example Boolware has found an error and reports it in the response.

Raw responses

In order to simplify and speed up parsing at the application, the response can be formatted as
column separated values instead of XML. This can be used when tuples (or index terms) are
fetched as a response.

Example:

<response raw="1">

<records from="1" count="25" maxchars="0">
<field name="name"/>
<field name="zip"/>
<field name="board"/>

132

</records>
</response>

Company no "58" 12345Mr Smith Mr Jones

By default, fields are separated by tab and tuples by carriage return + line feed. This can be
changed using the "fieldsep” and "rowsep" attributes. Let’s say that you want to change the field
separator to a tab surrounded by hash marks:

<response raw="1" fieldsep="#\t#">

Note that since the example data contains tabs and new lines, these must be changed to space.
Otherwise the response would be impossible to interpret. This is a simple solution, but has the
drawback that data is modified. If this is a problem to you, there is a way to overcome this — by
quoting data.

Value of the attribute 'quotes' can be set to: 'yes', '1', 'no’, '0' or litterals '"' or '''

<response raw="1" fieldsep=";" quotes="1">
<records from="1" count="25" maxchars="0">
<field name="name"/>
<field name="zip"/>
<field name="board"/>
</records>
</response>

"Company no; ""58""";"12345";"Mr Smith
Mr Jones"

Note that the quotes around "58" are doubled, and that the semicolon (the field separator) in the
name and the embedded line break in the Board field are kept intact in the response.

Export retrieved records to a file

Example:

Retrieve all records in the table "Bromma" using the $pk index and then export field data from
the specified columns "CompanyName," "PostalCode," and "City" to the file "f:\temp\file.txt" for
all retrieved records. Sort the records by "CompanyName" and enclose the data in quotation
marks.

<SoftboolXML request type="query">
<open session name="" queryhistory="0"/>
<database name="Bromma"/>
<table name="Bromma"/>
<query>FIND $pk:*</query>
<response raw="1" rowsep="\r\n" fieldsep="\t" quotes="1">

<sort expression="CompanyName asc"/>

<records exportresult="1" exportfile="f:\temp\file.txt" from="1"
count="all" maxchars="0" columnnames=""

replacecolumnnames="" randomfetch="" exportencoding=""

exportappend="" exportexcludesubfields="">

<field name="CompanyName" />

<field name="PostalCode"/>

<field name="City"/>

</records>
</response>
</SoftboolXML request>

To export records to a file, certain attribute values need to be specified in different elements,
and here is a description of these attributes.

133

The "raw" attribute must be set to '1' in the "response” element, see "Tab-separated response,”
and the "exportresult" and "exportfile" attributes must be specified and contain '1' and a valid file
name, respectively, in the Boolware server environment for the "records" element.

The "rowsep" and “fieldsep" attributes have default values of 'CRLF' and 'TAB' but can be
changed in the "response” element. If data needs to be enclosed in quotation marks, it should
also be specified as an attribute in the "response" element with the "quotes" attribute set to '1'
(the default value is '0').

In the "sort" element, a sorting criterion can be specified in the "expression" attribute, e.g.:
<sort expression="CompanyName asc, City desc"/> - to sort the exported result first by
"CompanyName" in ascending order and then by "City" in descending order.

The "field" element with the "name" attribute specifies which field or fields that should be
included in the export and in what order.

The following attributes can be specified in the "records” element:

The "exportresult” attribute should be set to '1' for exporting the retrieved result, and the
"exportfile" attribute should be assigned a valid file name. The file with the specified name will
be created by the Boolware Server, and all exported records will be stored in this file.

The "from" attribute indicates from which hit the data should be exported, and the "count"
attribute specifies the number of records to be exported. If "count" is set to the value 'all’, all
retrieved records from the starting record ("“from") will be exported.

The "maxchars" attribute can be set to a value greater than '0' indicating the maximum number
of characters to be exported from each field. The default value is '0' which means that all data in
the field will be exported.

The "columnnames" attribute is set to '1' if field names should be exported to the first row of the
exported file. If field names should be exported but replaced with other field names, this can be
specified using a comma-separated list of field names in the "replacecolumnnames" attribute.

The "randomfetch" attribute can be set to '1' if the records in the export should be exported in
random order, regardless of what is specified in the "sort" element.

The "exportencoding" attribute controls the format of data in the output file. Accepted values are
'is0-8859-1", 'utf8', 'xls' or 'xIsx' with the default value in the exported data being the same as the
encoding in the XML request.

'xIs' is the old Excel format, and 'xIsx' is the new format (MS Excel Open XML format).

The exported file cannot exceed 2 GB and cannot contain more than 65,535 identical strings if
"exportencoding" is set to 'xIs'.

If the "exportappend" attribute is set to '1' the exported records will be appended to the end of
the selected output file. The "exportappend" attribute is not used if either 'xIs' or 'xIsx' is selected
for the "exportencoding" attribute.

The "exportexcludesubfields" attribute should be set to '1' if XML subfields should be excluded
from the export.

Response for a request of type Query

If the request type is ‘query’, the following elements could occur depending on the outcome:
'records’, 'record’ and Tield'.

134

The element 'records’ has the following attributes: fotal’, from’, ‘to’ and ‘rank’. The attribute
‘total’ holds the total number of found records. This attribute will always contain a value. The
attribute from’ contains the same value that was set in the request part, while the attribute ’fo’
holds the number of the last fetched record (the same as set in the request except when there
were no more records to fetch). E.g. if you specify in the request from’="1" and ’to’="100" and
there only are 37 records that fulfills your query the ’to’ attribute will be changed to "37" in the
response part. The attribute ‘rank’ could be changed by Boolware Server together with a
corresponding warning message, if a non-existing rank mode was specified in the request. E.qg.
you want to rank regarding occurrence (1) but the Column is not indexed in this way thus the
rank mode will be reset to "0" (no ranking) and a warning message will be generated.

The element ‘record’ contains every requested record.

The following attributes are valid: ‘score’, where the score for the current record is stored. The
score could represent different things depending on what ranking mode has been requested.
After a Boolean query and no ranking (0) the score is 1.000 for all records. If ranking mode is
set to occurrence (1) in a Boolean query the number of occurrences of the search terms in each
record will be presented as an integer. If the rank mode is frequency (2) a value between 0 and
1 will represent the score in the form 0.xxx. If similarity search is requested (see Chapter 1
"Softbool Query language"), the score is also a value between 0 and 1.

The contents of the requested record is stored in the element field'. In the attribute ‘name’ the
name of the current Column is saved followed by the requested information for that Column. An
element ‘field’ is sent for each requested Column in each record.

Example:
<records total="7" from="1" to="2" rank="occurrency">
<record score="23">
<field name="Name">John Andersson</field>
<field name="Address">1124 Oak Road</field>
<field name="Zipcode">112 45</field>
<field name="City">Boston</field>
</record>
<record score="4">
<field name="Name">Ralph Johnson</field>
<field name="Address">2134 South Drive</field>
<field name=" Zipcode">114 15</field>
<field name="City"> Boston </field>
</record>
</records>

A request has generated 7 records and in the request the records should be ranked according
to occurrence 1 (occ) and the first two records should be presented. From each record the
information of four Columns are requested: Name, Address, Zipcode and City.

"John Andersson" is ranked before "Ralph Johnson", as the number of occurrences in the first
record is 23 compared to 4 for the second record.

Response for a request of type Index

If the type of the request was index the following attributes are valid for the element ‘records’.
field’ and ‘total’.

The name of the Column from which the index terms were fetched are saved in field’ and the
attribute ‘fotal’ holds the total number of index terms delivered in this response.

In the element ‘record’ the attributes ‘term’ and ‘count’ contains an extracted index term.

135

The attribute ‘term’ holds the index term and in the attribute ‘count’ a value is stored. This value
indicates in how many records the current index term occurs in the entire database.

If the attribute zoom’ is set to "yes", the value in the attribute ‘count’ reflects the number of
occurrences in the number of records in the current result rather than in the entire database.

Example:

<records field="Name" total="10">
<record term="JOHNSON" count="339"/>
<record term="JOLSON" count="97"/>
<record term="JONSON" count="439"/>
<record term="JUKE" count="3"/>
<record term="KALMA" count="2"/>
<record term="KATZ" count="21"/>
<record term="KAUFMAN" count="14"/>
<record term="KEMPF" count="3"/>
<record term="KULPERT" count="4"/>
<record term="LARSEN" count="12"/>

</records>

From a database you want to fetch 10 index terms contained in the Column 'Name’ from a
Boolware Index. In the request the word "Johnson" is specified in the attribute ‘start_position’.

Response containing Query History

By specifying "1" in the attribute ‘queryhistory’ in the element ‘open_session’ in the request, the
Query History will be activated in Boolware. When Query History is activated all queries and
responses from the last FIND command are saved in Boolware.

By specifying "1" in the attribute ‘queryhistory’in the element ‘response’ Boolware will send the
Query History in the response.

The element ‘queryhistory’ in the response part contains an attribute ‘total’, where the total
number of rows of the Query History to be sent is saved. Each row represents a query and its
response.

Each row in the Query History has an element ‘queryitem’ containing two attributes: ‘result’ and
‘intermediate’. The attribute result’ holds the total result, while the attribute ‘intermediate’ holds
the result of the current query.

At the end of each row the query is saved (only the 128 first characters of the query is sent
back).

Example:

<queryhistory total="4">
<gueryitem result="1403" intermediate="1403"
FIND JOHN </queryitem>
<gueryitem result="706" intermediate="29456"
AND ANDERSON </queryitem>
<gueryitem result="350" intermediate="47987"
AND BOSTON </queryitem>
<gueryitem result="296" intermediate="12453"
NOT SALESMAN </queryitem>

</queryhistory>

Four (4) queries are contained in this search session. In the first query you search for "John"
and the reply is 1.403 records.

In this case the result’ and ’intermediate’ are the same (this is the case for all FIND commands).

136

Next query is a refinement of the last result: AND "Anderson”, which means that both "John"
and "Anderson" must appear in the records. In this case the result is 706; 706 records contains
both "John" and "Anderson", but "Anderson" appears in 29.456 records, which is indicated in
the attribute ‘intermediate’.

The next query indicates that the term "Boston" also must be contained in the found records.

The result after this query reduces the number of records to 350 which is stored in ‘result’ and
the number of records containing the term "Boston"”, 47.987, is saved in ’intermediate’.

The last query will skip all records containing a "salesman". The final result is 296 records; and
"salesman" is contained in 12.453 records.

Response for Statistics

By specifying the element ’statistics’ containing the attributes: ‘column’, ‘groups’, 'onall' and
‘groupvalues’ you could get statistics on a numeric Column. The statistics is - by default -
calculated on the current result. By the attribute ‘onall' you could specify that all records in the
table should be contained in the calculation.

Examplel:

Get statistics on the numeric column "Solidity". Perform the calculation on the current result (all
companies in Stockholm) and set number of groups to 5 (quintile). You also want all the limit
values for the current group.

Request:
<?xml version="1.0" encoding="ANSI"?>
<SoftboolXML_requests>

<SoftboolXML request type="query">

<open_session name="" queryhistory="1"/>
<database name="Companies"/>

<table name=" Companies"/>

<query>FIND City:Stockholm</query>
<response queryhistory="1" type="" href="">

<statistics column="Solidity" groups="5" getallvalues="1"/>
</response>
</SoftboolXML request>
</SoftboolXML requests>

Response:
<?xml version="1.0" encoding="iso-8859-1" 72>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0" databasename="Companies"
flowexit="" >
<session>MySession</session>
<records total="64428" tablename="Companies">
</records>
<gueryhistory total="1">
<queryitem result="64428" intermediate="64428">FIND City:Stockholm</queryitem>
</queryhistory>
<statistics column="Solidity" tablename="Companies" groups="5" onall="0">
<statistic name="count" value="38283"/>
<statistic name="modecount" value="3095"/>
<statistic name="mode" value="100.000000"/>
<statistic name="sum" value="-779180537.840000"/>
<statistic name="avg" value="-20353.173415"/>
<statistic name="min" value="-425099700.000000"/>
<statistic name="max" value="1326.410000"/>
<statistic name="std" value="2396790.246590"/>
<statistic name="var" value="5744603486147.931600"/>
<statistic name="median" value="38.870000"/>
<statistic name="upper" value="82.435000"/>

137

<statistic name="lower" value="9.500000"/>
<statistic name="groups" values="9.500000, 27.825000, 51.435000, 82.435000/>
</statistics>
</SoftboolXML response>
</SoftboolXML responses>

where:

count number of records contained in the statistics
modecount number of records containing mode

mode the most common value within this statistics
sum the sum of all values

avg the arithmetic mean value

min the lowest value

max the highest value

std the standard deviation

var the variance

median the median value

upper upper limit for the specified 'group’

lower lower limit for the specified 'group’

groups all limit values for the specified 'group’
Request:

<?xml version="1.0" encoding="ANSI"?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open_session name="" queryhistory="1"/>
<database name="Companies" />
<table name=" Companies"/>
<query>FIND City:Stockholm</query>

<response queryhistory="1" type="" href="">
<statistics column="Liquidity" groups="10" onall="1" getallvalues="1"/>
</response>

</SoftboolXML request>
</SoftboolXML requests>

Response:
<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0" databasename="Companies"
flowexit="">
<session>MySession</session>
<records total="64428" tablename="Companies">
</records>
<queryhistory total="1">
<queryitem result="64428" intermediate="64428">FIND Ort:Stockholm</queryitem>
</queryhistory>
<statistics column="Liquidity" tablename="Foretag" groups="10" onall="1">
<statistic name="count" value="217869"/>
<statistic name="modecount" value="63"/>
<statistic name="mode" value="100.000000"/>
<statistic name="sum" value="610811992.529998"/>
<statistic name="avg" value="2803.574591"/>
<statistic name="min" value="-35215300.000000"/>
<statistic name="max" value="161918100.000000"/>
<statistic name="std" value="424165.974683"/>
<statistic name="var" value="179916774079.192990"/>
<statistic name="median" value="123.810000"/>
<statistic name="upper" value="538.960000"/>
<statistic name="lower" value="33.890000"/>
<statistic name="groups" values="33.890000, 60.820000, 83.630000,
103.610000, 123.810000, 149.970000, 191.260000, 272.360000,
538.960000/>
</statistics>
</SoftboolXML response>
</SoftboolXML responses>

138

Response for Similarity vectors

Get the similarity vectors from the retrieved result.

The element 'simvectors’ with the attributes from’, 'to’ and ‘content’ within the element
‘response’.

If available the query vector always is fetched as the first record and thereafter the requested
number of similarity vectors.

If the query vector is not available a warning element is produced instead. The query vector is
available if a similarity query has been executed.

The result contains records containing two fields: ‘Primary Key’ and ‘Similarity Vector’ and the
attribute ‘score’ within the element ‘record’ containing the score of the similarity.

The field 'Primary Key’ contains the tuples primary key and ’Similarity Vector’ contains the
similarity vector.

The attribute ‘content’is the way to guide if the content terms shall be in text terms or numeric
terms. The similarity vectors can be large, containing hundreds of terms.

Example: Get similarity vectors for the first two records in numeric form.
<simvectors from="1" count="2" content="numeric"/>

The response will be like:
<simvectors from="1" to="2" content="number">
<record score="0.000">
<field name="Primary Key">Query Vector</field>
<field name="Similarity Vector">37544/1/</field>
</record>
<record score="1.000">
<field name="Primary Key">556416-5966</field>
<field name="Similarity Vector">37544/1/</field>
</record>
<record score="0.707">
<field name="Primary Key">556266-4101</field>
<field name="Similarity Vector">37544/1/,
94994/1/</field>
</record>
</simvectors>

Response for Set Search

Set search consists of the following commands, savequery, saveresult, savescratch, reviewset,
reviewquery, reviewresult, deleteset, deletequery, deleteresult and deletescratch. These are
called with the type 'execute' in the request.

Example: Save current result with the name 'MyResult’

<SoftboolXML request type="execute">
<open_session name="charlie" server="192.168.1.1"/>
<execute>

saveresult name="MyResult" table="MyTable"
</execute>
</SoftboolXML request>

Response of the request:
<SoftboolXML response type="execute" error code="0">

139

<save type="result"/>
</SoftboolXML response>

The element 'save’ contains the attribute type’ that tells the type of the saved query.

Example: Fetch all saved results in ascending name order

<SoftboolXML request type="execute">
<open session name="charlie" server="192.168.1.1"/>
<execute>

reviewresult name="*" order="name" dir="asc"
</execute>
</SoftboolXML request>

Response of the request:

<SoftboolXML response type="execute" error code="0">

<review type="result"/>

<records total="1">
<record name="MyResult" ctime="2003-09-09" database="FTimes"
table="Financial Times" result="14">
Text/DOC/HEADLINE:sport AND Text/DOC/TEXT:golf
</record>

</records>

</SoftboolXML response>

The element ‘review’ contains the attribute ‘type’that contains the query type.
The element ‘records’ contains the attribute ‘total’ that is the number of ‘record’ that will follows.

The element ‘record’ contains the attributes ‘public’ the group identification for a public object,
‘'name’, the name of the saved query, ‘ctime’ contains the time of the saved query, 'database’
contains the database, ‘table’ contains the table for the query. If the type is result ’or 'set’ the
attribute ‘result’ is the number of hits for the saved query.

Example: Fetch all saved global results in ascending name order for the group SalesDep

<SoftboolXML request type="execute">
<open_session name="charlie" server="192.168.1.1"/>
<execute>
reviewresult public="SalesDep" name="*" order="name" dir="asc"
<execute>
</SoftboolXML request>

Response of the request:
<SoftboolXML response type="execute" error code="0">
<review type="result"/>
<records total="1">
<record public="SalesDep" name="MyResult" ctime="2003-09-09"
database="FTimes" table="Financial Times" result="14">
Text/DOC/HEADLINE:sport AND Text/DOC/TEXT:golf
</record>
</records>
</SoftboolXML response>

Example: Delete the result with the name 'MyResult

<SoftboolXML request type="execute">
<open_ session name="charlie" server="192.168.1.1"/>
<execute>
deleteresult name="MyResult"
</execute>
</SoftboolXML request>

Response of the request:

140

<SoftboolXML response type="execute" error code="0">
<delete type="result" total="1"/>
</SoftboolXML response>

The element ‘delete’ contains the attributes ’fype’ that contains the query type of the deleted
query and ’fotal’ contains the number of queries deleted.

Response for metadata

Fetched metadata from Boolware Server is hierarchically ordered with element database as the
database top element and the element field with its attribute the lowest.

The element ‘'metadata’ contains all metadata.

The element 'databases’, attribute 'count’ holds number of databases that follows.

The element 'database’ is top for all databases in the reply.

The attribute 'name’ holds the name of the database.

The attribute 'descr’ holds the description of the database.

The attribute ‘provider’ holds the database provider.

The attribute 'status’ holds the database status.

The element 'tables’, attribute 'count’ holds number of tables that follows.
The element 'table’ is the top of each table in the reply.

The attribute 'schema’ holds the schema of the table.

The attribute 'name’ holds the name of the table.

The attribute 'status’ holds the status of the table.

The attribute 'count’ hold number of rows in the table.

The element ‘fields’, attribute 'count’ holds the number of fields that follows.

The element ‘field’ is the start of each field that follows.

The attribute 'name’ holds the name of the field.

The attribute 'datatype’ holds the type of the field in ODBC constants.

The attribute 'datasize’ holds the size of the field.

The attribute 'precision’ holds the size of the field.

The attribute 'scale’ holds the number of decimals of the field if field is float type.

The element "attribute’ holds all properties of the field in the Boolware Server system. The value
for these attributes is '0’ for 'no’ and ’1’ for 'yes'.

The attribute 'word’ holds word indexed.

The attribute 'string’ holds string indexed.

The attribute 'proximity’ holds proximity.

The attribute 'phonetic holds phonetic indexed.

The attribute ’similarity’ holds similarity indexed.

The attribute ’lefttrunc’ holds the reversed indexed.
The attribute ’proxline’ holds proximity line.

The attribute 'compress’ holds interpunctuated abbreviations.
The attribute ‘permutate’ holds permutated strings.
The attribute 'stemmed’ holds stemmed indexd.

The attribute 'cluster’ holds grouped strings.

The attribute 'rank’ holds rankable.

The attribute ‘fieldsearch’ hold search scoop field.
The attribute 'freetext’ hold the search scoop free text.
The attribute 'alias’ holds non indexed alias field.

The attribute 'aliasindex’ holds indexed alias field.
The attribute ‘markuptags’ holds ignore HTML tags.
The attribute 'stopwords’ holds active stop words.

The attribute foreignkey’ holds foreign key.

The attribute 'dataxml’ holds field containing xml data.
The attribute 'subfield’ holds xml-field.

The attribute 'virtual’ holds virtual field.

141

The attribute’ category’ used for categorization

The attribute ‘datafield’ data stored in Boolware data file

The attribute 'searchterm’ marked as search term

The attribute ’prefix’ field content used to prefix xml-content words
The attribute ’attribute’ is xml-attribute

The attribute ‘datautf8’ field contains utf-8 encoded data

The attribute 'case’ indexed case sensitive

The attribute ‘'memmap’ field is memory mapped

The attribute 'presort’ field is presorted

The attribute 'geopos’ geografic Long or Lat in WGS84 format
The attribute 'geometer’ geografic meter format e.g. RT90

The attribute 'geomult’ geografic field containing both Lat and Long
The attribute 'within’ field index with Within

The attribute ‘wordasis’ word indexed as is

The attribute ‘stringasis’ string indexed as is

The attribute ‘withinstring’ string indexed ‘Within string’

<metadata>
<databases count="">
<database name="" descr="" status="">
<tables count ="">
<table schema="" name ="" status=""
count="">
<fields count="">
<field name="" datatype=""
datasize="" precision="" scale=""
pksequence="">
<attributes word="" string =""
proximity="" phonetic =""
similarity ="" lefttrunc =""
proxline ="" compress =""
permutate = "" stemmed = ""
cluster ="" rank =""
fieldsearch ="" freetext =""
alias ="" aliasindex ="" markuptags =""
stopwords ="" foreignkey = ""
dataxml ="" subfield =""
virtual ="" category="" datafield="" searchterm="" prefix=""
attribute="" datautf8="" case="" memmap="" presort=""
geopos="" geometer="" geomult="" wordasis="" stringasis="" withinstring=""/>
</field>
</fields>
</table>
</tables>
</database>
</databases>
</metatdata>

LOOKUP

Is a way of getting data from another table than the one that is currently in use in the xml
request part. Of course you could perform a "lookup" within the table currently in use as well.

Request

Lookup have the following grammar and is a sub-element to the element <field> in the
response part of the xml request. The element <field> should be repeated for every field that
should be fetched.

<records from="" count="">
<!—- field -->
<field name="" dataenclosedelement="">

142

<lookup replace="" subrecordlimit="" sort="">
<lookuptable name=""/>

<lookupfield src="" target=""/>

<field name=""/>

<field name=""/>

<!—Nested lookup -->

<field name="">

<lookup>
<lookuptable name=""/>
<lookupfield src="" target=""/>

<field name=""/>
<field name=""/>
</lookup>
</lookup>
</field>
<field name=""/>
<field name=""/>

</records>

Note!

A valid lookup must have: one <lookuptable name=""/> element, and at least one
<lookupfield src="" target=""/>element and at least one <field name=""/> elementto

be performed.

Element:
<lookup [replace=""] [subrecordlimit=""] [sort=""] [suppressempty=""] />

Start and description of the requested lookup for the parent <field> element

Attribute:

replace replace the parent field; default is O

subrecordlimit number of sub-records that should be printed in the response; default is 1
sort a sort expression to sort the lookup records that should be fetched

in those cases were the lookup generates more than on record; the sort can

be on any field in the target table, Softbool AB recommends that the string

index type is set on fields that should be sorted; default is no sort
suppressempty Available if not raw request. Suppress empty subrecords; default is 0

Element:
<lookuptable name=""/>

The target table where the lookup should take place; query and fetch records

Attribute:

name the name of the target table

Element:

<lookupfield [src=""] [target=""] J[autotrunc=""] [value=""] [method=""]
[op=""] [flowvariablevalue=""]/>

Here is the query part of the lookup described. If more than one <lookupfield> elementis
given the Boolean command AND is done between all lookup fields.

Attribute:

src the name of the field in the source table where data is fetched for the query

target the name of field in the target table. Can be empty if field is specified in the
value instead

autotrunc if the query should be right truncated; default is 0

value replace the column data value from the src data field as written.

Max size is 256 bytes. Default method in this case is word.

143

method apply search method word, string, syn, thes, sound, stem, near, fuzzy,
stringasis eller wordasis. The query will performed with the proper
subcommand: string(), syn(), thes(), sound(), stem(), near(), fuzzy(),
stringasis() eller wordasis(); default is string.

op set the default operator AND or OR between search terms; Default is AND

flowvariablevalue Use a variable that can be set in a flow. If the variable is found and contains
a value, this value will be used in the search field specified in the "target".
This has a higher priority than "value". Default method is in this case word

Element:

<field name="" [aliasname=""] [conditionalreplacevalue=""]
[conditionalcomparefield=""] [nohitreplacevalue=""]
[nohitkeepparentvalue=""]1/>

The field that should be fetched in the response part.

Attribute:
name name of the datafield in the query table
aliasname replace the name attribute in the <field> or <subfield>

element in the response part
conditionalreplacevalue replace content of a field containing a specified phrase or term
e.g. conditionalreplacevalue=""*''NOT ALLOWED"
conditionalcomparefield name of the field whose contents are matched against given criteria in
conditionalreplacevalue. Default is the same datafield name that is
specified in the name attribute.
nohitreplacevalue if the lookup query does not generate any hit, the given value will be
used in the response of the <subfield> element
nohitkeepparentvalue if the lookup query does not generate any hit, the source field value
where you placed the lookup will be used in the response of the
<subfield> element. If set to 1, this setting has higher priority than
nohitreplacevalue. Default is 0.

For more information about <field> attributes, see Softbool XML Request Schema.

Response

Hierarchy if the attribute replace is off in the request lookup:
<record score="1.000">
<field name="">
<subrecord>
<subfield name=""></subfield>
</subrecord tablename="">
</field>
</record>

Element:
<field name=""/>

Starts the data of a requested field

Attribute:

name If the attribute aliasname is given in the request part of the <fie1d> element
it is the alias name that is given for the name attribute;
otherwise it is the actual field name from the table

Hierarchy if the attribute replace is given in request lookup:
<record score="1.000">

<subrecord>

<subfield name=""></subfield>

144

</subrecord>
</record>

Element:
<subrecord tablename=""/>

Start of one or more <subfield> element.

Attribute:
tablename name of the table for the subrecord element

Element:
<subfield name=""/>

Start data for given lookup field in the request part.

Attribute:

name If the attribute aliasname is given in the request part of the <fie1d> element
it is the alias name that is given for the name attribute;
otherwise it is the actual field name from the table

Lookup example

Search in a table containing company information. This table contains one field with the SIC
code for the company. Here we want to add the correlated text for the code in the response
part. This corresponding text is stored in another table in the same database.

The table with the company information is named "Companylnfo" and the table with the sic code
text is named "SIC".

The table "CompanyInfo" contains among other fields: "CompanyName", "City", SICCode" and
"CompanyLang".

The table SIC have three fields: "Code", "Lang" and "Info"; were the "Code" field contains the
SIC code, the "Lang" contains a language code and "Info" contains the actual describing text.

Get all companies from the company info table that have the word "IKEA" in its name.
Sort the result in company name ascending order and the fetch data from the fields:
"CompanyName", "SICCode", "City" and "CompanyLang".

We also perform a lookup to get the describing text for the SIC code by using the element
<lookup>.

Also apply an alias name, "Lookuptext", to replace the field name "Info" in the response part.

Build the xml request:
<?xml version="1.0" encoding="UTF-8"?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open_session name="" queryhistory="1"/>
<database name="Companies"/>
<table name="CompanyInfo"/>
<query>FIND CompanyName:IKEA </query>
<response queryhistory="0" type="" href="">
<sort expression="CompanyName asc"/>
<records from="1" count="2" maxchars="0" >
<field name="CompanyName"/>
<field name="SICCode" dataenclosedelement="value">
<lookup subrecordlimit="3">
<lookuptable name="SIC"/>
<lookupfield src="SICCode" target="Code"/>
<field name="Lang"/>
<field name="Info" aliasname="Lookuptext"/>

145

</lookup>

</field>

<field name="City"/>

<field name="CompanyLang"/>
</records>

</response>

</SoftboolXML request>
</SoftboolXML requests>

The response could be:

<?xml version="1.0" encoding="UTF-8" ?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0" databasename="Companies" flowexit="" >
<session>CARLOS</session>
<records total="13935" from="1" to="2" rank="sort asc" tablename="CompanyInfo">
<record score="1.000">
<field name="CompanName">IKEA AB</field>
<field name="SICCode"><value>361</value>
<subrecord tablename="SIC">
<subfield name="Lang">SE</subfield>
<subfield name="Lookuptext">Tillverkning av mdébler</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang">EN</subfield>
<subfield name="Lookuptext">Manufacturing of furniture</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang">EN</subfield>
<subfield name="Lookuptext">Manufacturing of furniture, tables</subfield>
</subrecord>
</field>
<field name="City">BAGARMOSSEN</field>
<field name="CompanyLang">SE</field>
</record>
<record score="1.000">
<field name="CompanyName">IKEA Sweden AB</field>
<field name="SICCode">505
<subrecord tablename="SIC">
<subfield name="Lang">SE</subfield>
<subfield name="Lookuptext">Detaljhandel inom drivmedel</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang">EN</subfield>
<subfield name="Lookuptext">Retaling fuel</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang">EN</subfield>
<subfield name="Lookuptext">Retaling fuel, o0il</subfield>
</subrecord>
</field>
<field name="City">STOCKHOLM</field>
<field name="CompanyLang">EN</field>
</record>
</records>
</S0ftboolXML response>
</So0ftboolXML responses>

Refine the lookup by only fetching the text that correlates with the language code for the
company as well, the field "LanguageCode".

To do that we add an extra <lookupfield src="" target=""/> element to the lookup to
achieve a Boolean AND command to get only the records with the correct SIC code and correct
language code from the company record.

<?xml version="1.0" encoding="UTF-8"?>
<SoftboolXML requests>

<SoftboolXML request type="query">
<open_session name="" queryhistory="1"/>
<database name="Companies"/>

<table name="CompanyInfo"/>

<query>FIND CompanyName:IKEA</query>

146

<response queryhistory="0" type="" href="">
<sort expression="CompanyName asc"/>
<records from="1" count="2" maxchars="0" >
<field name="CompanyName" />
<field name="SICCode">
<lookup subrecordlimit="3">
<lookuptable name="SIC"/>
<lookupfield src="SICCode" target="Code"/>
<lookupfield src="CompanyLang" target="Lang"/>
<field name="Lang"/>
<field name="Info" aliasname="Lookuptext"/>
</lookup>
</field>
<field name="City"/>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

The response of the above will be:
<?xml version="1.0" encoding="UTF-8" 2>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0" databasename="Companies" flowexit="">
<session>CARLOS</session>
<records total="13935" from="1" to="2" rank="sort asc" tablename="CompanyInfo">
<record score="1.000">
<field name="CompanName">IKEA AB</field>
<field name="SICCode">361
<subrecord tablename="SIC">
<subfield name="Lang">SE</subfield>
<subfield name="Lookuptext">Tillverkning av mdébler</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang">SE</subfield>
<subfield name="Lookuptext">Detaljhandel inom drivmedel</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang"></subfield>
<subfield name="Lookuptext"></subfield>
</subrecord>
</field>
<field name="City">BAGARMOSSEN</field>
<field name="CompanyLang">SE</field>
</record>
<record score="1.000">
<field name="CompanyName">IKEA Sweden AB</field>
<field name="SICCode">505
<subrecord tablename="SIC">
<subfield name="Lang">EN</subfield>
<subfield name="Lookuptext">Retaling fuel</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang">EN</subfield>
<subfield name="Lookuptext">Retaling fuel, o0il</subfield>
</subrecord>
<subrecord tablename="SIC">
<subfield name="Lang"></subfield>
<subfield name="Lookuptext"></subfield>
</subrecord>
</field>
<field name="City">STOCKHOLM</field>
<field name="CompanyLang">EN</field>
</record>
</records>
</SoftboolXML response>
</SoftboolXML responses>

Here it will be one <subrecord> element with no data because the attribute subrecordlimit is set

to 3 in the <1ookup> element in the request and it was only two lookup records that matched the
Boolean AND query with SIC-code and language code from the company record.

147

Lookup example with conditional replace

In this example we want to lookup every phonenumber to see if we are allowed to display it.

<?xml version="1.0" encoding="UTF-8" ?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<database name="Person" />
<table name="Person" />
<query>Find PhoneNumber:*</query>
<response queryhistory="0">
<records from="1" count="25">
<field name="PhoneNumber">
<lookup replace="1" subrecordlimit="1" >
<lookuptable name="NotAllowedPhoneNumbers" />
<lookupfield src="PhoneNumber" target="PhoneNumber" method="word" />
<field name="PhoneNumber" nohitkeepparentvalue="1"
conditionalreplacevalue=""'*"'; 'NOT ALLOWED'"/>
</lookup>
</field>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

Example with conditional replace without lookup

In this example we want to check if phonenumber is allowed to be displayed or not.

<?xml version="1.0" encoding="UTF-8" ?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<database name="Person" />
<table name="Person" />
<query>Find PhoneNumber:*</query>
<response queryhistory="0">
<records from="1" count="25">
<field name="PhoneNumber"
conditionalreplacevalue=""'1"; '"NOT ALLOWED'"/>
conditionalcomparefield="NIX"/>
</records>
</response>
</SoftboolXML request>
</S0ftboolXML requests>

Example XML

Below you will find some complete XML scripts where both the request and the response will be
shown.

As mentioned earlier Boolware should be used interactively; one user (session) should keep its
logical connection to Boolware during a long time to refine the search result by using the
Boolean operators stepwise. Using this technique makes it possible to fetch information from
the data source at any time without re-searching; perhaps you want to re-order the records by
sorting them between two presentations.

All examples are made within the same session, but of course it is possible to start several
sessions in Boolware.

The conditions for the below examples are:
In a huge database, Newspapers, which contains millions of articles from different magazines
you want to perform different types of queries.

The database contains one Table, Articles, and the following Columns exist: Article no.,
Magazine, Publishing date, Author, Category, Size and Text.

148

The Column Article no. contains a unique identification (Primary key) for the articles stored in
the database. The Column Magazine contains the name of the magazine where the article was
published. Publishing date contains the date the current article was published in the form
yyyymmdd, the name of the author is stored in the Column Author. The type of article: sport,
domestic politics, foreign politics, culture, finance etc. is saved in the Column Category. The
Column Size contains the size of the article in words. Finally the body of the article is stored in
the Column Text.

Example 1 A simple query

You want to find all articles that contain the word car. Probably it is the within the Column Text
you should search to find the wanted articles. The simple query looks like this:

FIND Text:car. Lets say that there are 12.435 articles containing the word car. This time no
articles should be fetched from the data source.

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML requests>
<SoftboolXML request type="query" queryhistory="1">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<query>FIND Text:car</query>
</SoftboolXML request>
</SoftboolXML requests>

As no articles should be fetched from the data source the response’ element should be omitted.

The answer from Boolware Server will be:
<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records total="12435"/>
</SoftboolXML response>
</SoftboolXML responses>

The only answer in this case is: type of request (query), an indication that the request went OK
(error_code = 0), what session it is (Userl) and the result of the query 12.435.
Userl is the session that will be used in all examples.

Despite no Query History is requested it must be specified for the FIND command if you - later
on - within this search session (between two FIND commands) want to fetch the Query History.

Example 2 Refined query with response

By specifying more search criteria you could very easily reduce the number of articles:
AND Publishing date:>=20000101.

This query will give all articles about cars published this century. To continue from the previous
example it is very important to specify the very same session, Userl, as specified in the
previous call. This time you want the three (3) articles containing most search terms to be
fetched from the data source. The Columns you want information from are: Article no.,
Publishing date and Text. A maximum of 20 characters from each Column should be fetched.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML requests>
<SoftboolXML request type="query" queryhistory="1">
<open_ session name="Userl"/>
<database name="Newspapers"/>

149

<table name="Articles"/>
<query>AND "Publishing date":>=20000101</query>
<response>
<records from="1" count="3" rank="occurrency" maxchars=20>
<field name="Article no."> </field>
<field name="Publishing date"> </field>
<field name="Text"> </field>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>
After this query the number of articles is reduced to 735.

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records total="735" from="1" to="3" rank="occ"/>
<record score="14">
<field name="Article no."> 8432 </field>
<field name="Publishing date"> 20000912 </field>
<field name="Text"> Article about Ford...</field>
</record>
<record score="12">
<field name="Article no."> 736 </field>
<field name="Publishing date"> 20000422 </field>
<field name="Text"> Article about Saab...</field>
</record>
<record score="7">
<field name="Article no."> 12456 </field>
<field name="Publishing date"> 20000714 </field>
<field name="Text"> Article about Volvo...</field>
</record>
</records>
</SoftboolXML response>
</SoftboolXML responses>

This time you will get the requested articles along with the result. As the articles are requested
in a certain order (number of occurrences), the first article is the one containing most search
terms (car and >=20000101; 14 times).

Example 3 Refine and Query History

Another refinement should be performed; only articles that belong to the category culture
should be in the result.

This time you want the articles in frequency order and as several queries have been performed
the Query History should be contained in the response.

The same Columns should be fetched this time.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open_ session name="Userl" queryhistory="1"/>
<database name="Newspapers"/>
<table name="Articles"/>
<query>AND Category:culture</query>
<response queryhistory="1">
<records from="1" count="3" rank="frequency" maxchars=20>
<field name="Article no."> </field>
<field name="Publishing date"> </field>
<field name="Text"> </field>
</records>

150

</response>
</SoftboolXML request>
</SoftboolXML requests>

After this query the number of articles is reduced to 5.

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session> Userl</session>
<records total="5" from="1" to="3" rank="freq"/>
<record score="0.338">
<field name="Article no."> 12456 </field>
<field name="Publishing date"> 20000714 </field>
<field name="Text"> Article about Volvo...</field>
</record>
<record score="0.306">
<field name="Article no."> 8432 </field>
<field name="Publishing date"> 20000912 </field>
<field name="Text"> Article about Ford...</field>
</record>
<record score="0.288">
<field name="Article no."> 736 </field>
<field name="Publishing date"> 20000422 </field>
<field name="Text"> Article about Saab...</field>
</record>
</records>
<queryhistory total="3">
<queryitem result="12435" intermediate="12435"
FIND Text:car </queryitem>
<queryitem result="735" intermediate="10726"
AND "Publishing date":>=20000101 </queryitem>
<queryitem result="5" intermediate="2489"
AND Category:culture </queryitem>
</SoftboolXML response>
</SoftboolXML responses>

This time you will get - along with the articles - the Query History. The attribute 'result’ shows
the result after each query, while the attribute ‘intermediate’ tells the number of articles for the
current query. In this example the query for Category:culture generated 2.489 hits.

Example 4 Get the remaining articles

In this example the remaining two articles from the earlier search session should be fetched.
Totally there are 5 articles and three of them has already been fetched (Example 3). This
example will show how to continue a fetch of result rows without re-searching the database.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open_session name="Userl" queryhistory="1"/>
<database name="Newspapers"/>
<table name="Artiklar"/>
<response queryhistory="1">
<records from="4" count="2" rank="frequency" maxchars=20>
<field name="Article no."> </field>
<field name="Publishing date"> </field>
<field name="Text"> </field>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>

151

<SoftboolXML response type="query" error code="0">
<session> Userl</session>
<records total="5" from="4" to="5" rank="freq"/>
<record score="0.204">
<field name="Article no."> 645 </field>
<field name="Publishing date"> 20000304 </field>
<field name="Text"> Article about Simca...</field>
</record>
<record score="0.198">
<field name="Article no."> 1802 </field>
<field name="Publishing date"> 20000131 </field>
<field name="Text"> Article about Citroen.</field>
</record>
</records>
<queryhistory total="3">
<queryitem result="12435" intermediate="12435"
FIND Text:car </queryitem>
<queryitem result="735" intermediate="10726"
AND "Publishing date":>=20000101 </queryitem>
<queryitem result="5" intermediate="2489"
AND Category:culture </queryitem>
</SoftboolXML response>
</SoftboolXML responses>

In this example you do not need to specify any query as you should use the result from Example
3; you should just fetch the two remaining articles. The Query History will, of course, be exactly
the same and thus could be omitted as well.

Example 5 Sort the result

In this example it is only the presentation order of the found articles that differs. Instead of
presenting the articles in frequency order they should appear in chronological order. The article
published first should be presented first. If the sort column "Publishing date" has no data it
should be "sorted" first. All articles should be fetched. As no query is performed the Query
History is omitted.

<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML_requests>
<SoftboolXML request type="query">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<response>
<sort expression=""Publishing date" asc emptydata=first"/>
<records from="1" count="5" maxchars=20>
<field name="Article no."> </field>
<field name="Publishing date"> </field>
<field name="Text"> </field>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records total="5" from="1" to="5" rank="sort asc"/>
<record score="1.000">
<field name="Article no."> 1802 </field>
<field name="Publishing date"> 20000131 </field>
<field name="Text"> Article about Citroen.</field>
</record>
<record score="1.000">
<field name="Article no."> 645 </field>

152

<field name="Publishing date"> 20000304 </field>
<field name="Text"> Article about Simca...</field>
</record>
<record score="1.000">
<field name="Article no."> 736 </field>
<field name="Publishing date"> 20000422 </field>
<field name="Text"> Article about Saab...</field>
</record>
<record score="1.000">
<field name="Article no."> 12456 </field>
<field name="Publishing date"> 20000714 </field>
<field name="Text"> Article about Ford...</field>
</record>
<record score="1.000">
<field name="Article no."> 8432 </field>
<field name="Publishing date"> 20000912 </field>
<field name="Text"> Article about Volvo...</field>
</record>
</records>
</SoftboolXML response>
</SoftboolXML responses>

As the result from Example 3 should be used no query should be performed. All that should be
done is to sort the articles before fetching them from the data source. The Query History is
omitted as well.

Example 6 Fetch Index terms

In some cases it is necessary to see what index terms there are to search for. Within the
Boolware Server there are two ways of fetching the index terms: fetch index terms that is in any
record, or fetch index terms that appear in records contained in the current result (zoom).

By specify a ’start_position’ you could determine where in the index to start. The number of
index terms to be fetched could also be specified.

Assume that you want to see 10 index terms from the Column "Text’ starting with car. All
records should be included.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML_requests>
<SoftboolXML request type="index">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<index field="Text" type="1" start position="car" max terms="10"/>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>
<SoftboolXML response type="index" error code="0">
<session>Userl</session>
<records field="Text" total="10"/>
<record term="CAR" count="12435"/>
<record term="CARAT" count="72"/>
<record term="CARAVAN" count="12"/>
<record term="CARBON" count="43"/>
<record term="CARD" count="2497"/>
<record term="CARDS" count="14435"/>
<record term="CARE" count="10435"/>
<record term="CAREER" count="4851"/>
<record term="CARES" count="9439"/>
<record term="CARESS" count="48"/>
</records>

153

</SoftboolXML response>
</SoftboolXML responses>

The value that is found in "count’ reflects in how many records within the entire database the
term appears.

Example 7 Fetch Index terms within result

In this example you want to find index terms still within records within the current result. The
result is from the following query: FIND Text:car which gives 12.435 hits.
Assume that you want to see 10 index terms from the Column 'Text’ starting with car.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML requests>
<SoftboolXML request type="index">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<index field="Text" type="1" start position="car" zoom="yes"
max_terms="10"/>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records field="Text" total="10"/>
<record term="CAR" count="12435"/>
<record term="CARAT" count="5"/>
<record term="CARD" count="546"/>
<record term="CARDS" count="773"/>
<record term="CARE" count="213"/>
<record term="CAREER" count="17"/>
<record term="CARES" count="7"/>
<record term="CARL" count="3"/>
<record term="CARVE" count="1"/>
<record term="CASE" count="14"/>
</records>
</SoftboolXML response>
</SoftboolXML responses>

The value that is found in ‘count’ reflects in how many records within the current result the term
appears.

Note that some of the terms no longer are fetched, as they do not appear in the result
(CARAVAN, CARBON, and CARESS).

Example 8 Fetch hierarchic index

In this example you want to fetch index terms from a grouped index in hierarchic order. There
are three different ways to present a hierarchic index in Boolware:

1. Hierarchic presentation ordered by number of occurrences (type = 10)
2. True index order where each group will be presented separately (type = 11)
3. Hierarchic presentation in alphabetical order (type = 12)

Given is a column ‘Date’ indexed as grouped index in table ‘Person’. The presentation should

be ordered by number of occurrences (type = 10). The dates are stored in the following way:
yyyymmdd and are grouped like this: 4, 6, 8. The first 10 records are requested.

154

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML requests>
<SoftboolXML request type="index">
<open session name="Userl"/>
<database name="Register"/>
<table name="Person"/>
<index field="Date" start position="" type="10" max_ terms="10" />
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="index" error code="0">
<session>Userl</session>
<records field="Date" total="10"/>

<record term="1945" count="14837"/>
<record term="194503" count="1318"/>
<record term="19450321" count="60"/>
<record term="19450312" count="52"/>
<record term="19450310" count="48"/>
<record term="19450327" count="47"/>
<record term="19450301" count="32"/>
<record term="19450331" count="30"/>
<record term="19450302" count="30"/>
<record term="19450313" count="25"/>

</records>
</SoftboolXML response>
</SoftboolXML responses>

The numbers in ‘count’ the number of occurrences for the corresponding term.

The same table and column as in the above example but this time you want the hierarchic index
presented in alphabetical order (type = 12).

<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML_requests>
<SoftboolXML request type="index">
<open_session name="Userl"/>
<database name="Register"/>
<table name="Person"/>
<index field="Date" start position="" type="12" max terms="10" />
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>
<SoftboolXML response type="index" error code="0">
<session>Anvandarel</session>
<records field="Date" total="10"/>

<record term="1904" count="9837"/>
<record term="190401" count="11"/>
<record term="19040101" count="60"/>
<record term="19040102" count="52"/>
<record term="19040103" count="96"/>
<record term="19040104" count="147"/>
<record term="19040105" count="14"/>
<record term="19040106" count="86"/>

term="19040107"
term="19040108"

<record
<record
</records>
</SoftboolXML response>
</SoftboolXML responses>

count="32"/>
count="12"/>

The numbers in ‘count’ the number of occurrences for the corresponding term.
To get the next 10 records you just activate the ‘continuation’ attribute.

155

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML request>
<SoftboolXML request type="index">
<open session name="Userl"/>
<database name="Register"/>
<table name="Person"/>
<index field="Date" start position="" type="12" max terms="10"
continuation="yes"/>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="index" error code="0">
<session>Anvéadndarel</session>
<records field="Date" total="10"/>
<record term="19040109" count="12"/>
<record term="19040110" count="19"/>
<record term="19040111" count="55"/>
<record term="19040112" count="77"/>
<record term="19040113" count="21"/>
<record term="19040114" count="63"/>
<record term="19040115" count="89"/>
<record term="19040116" count="16"/>
<record term="19040117" count="55"/>
<record term="19040118" count="72"/>
</records>
</SoftboolXML response>
</SoftboolXML responses>

Example 9 Fetch Index terms within result

In this example you want to get index terms in frequency order; number of occurrences. The
order should be descending; the most frequent terms will be presented first.

Assume that you want to see the 10 most common index terms from the Column 'Text’. To limit
the selection you are only interested in terms that occur in more than 1.000 records.

<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML_requests>
<SoftboolXML request type="index">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<index field="Text" type="14" order="desc" freqgtype="1"
start_position=">1000" max terms="10"/>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records field="Text" total="10"/>
<record term="IN" count="104706"/>
<record term="AND" count="99723"/>
<record term="ON" count="95468"/>
<record term="WHICH" count="93732"/>
<record term="TO" count="92996"/>
<record term="A" count="92865"/>
<record term="OF" count="91604"/>
<record term="WITH" count="90673"/>
<record term="AN" count="90567"/>
<record term="FOR" count="87103"/>
</records>

156

</SoftboolXML response>
</SoftboolXML responses>

The value that is found in ‘count’ reflects in how many records within the current result the term
appears.

Note that only terms appearing in more than 1.000 records will be selected. This means that the
extracting and sorting of the terms will be considerably faster compared to extract and sort all
index terms. In the next example, Example 9, positioning within this selected group of index
terms will take place.

Example 10 Positioning within selected group of terms in frequency order

In this case you want to position to a certain frequency before starting to fetch the index terms
selected in Example 8. Note that you could only position within the selected index terms; in this
case index terms that are contained in more than 1.000 records.

The order should be ascending and you want to start from a term that is contained in 2.000 (or
the closest higher frequency) records.

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML requests>
<SoftboolXML request type="index">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<index field="Text" type="14" order="asc" freqtype="1" start position="2000"
max_ terms="10"/>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records field="GREATEST" total="10"/>
<record term="GIVE" count="2001"/>
<record term="NO" count="2002"/>
<record term="ON" count="2002"/>
<record term="DOWN" count="2003"/>
<record term="THINK" count="2007"/>
<record term="GONE" count="2008"/>
<record term="EVERY" count="2011"/>
<record term="BOTH" count="2012"/>
<record term="TIME" count="2014"/>
<record term="LONGER" count="2015"/>
</records>
</SoftboolXML response>
</SoftboolXML responses>

The value that is found in ‘count’ reflects in how many records within the current result the term
appears.

Example 11 Fetch specified index terms

In this case you want only index terms that meet certain criteria. By using the Boolware wild
cards (*, ?, ! and #) you could specify a "mask" as start_position. Only those terms in the index

157

that match this "mask" will be fetched. This function could of course also be used for zoomed
index; just fetch approved index terms that are contained in the current result (zoom).

The number of index terms to fetch is specified in the usual way by max_terms.

From the column ‘Text’ you want to fetch index terms (car models) from the entire index that
match the following "mask": !##* (the terms must start with a letter (!) and be followed by at least
two digits (##); the * tells that anything could follow. (You could specify the wild cards together
with "normal” letters and digits as you like.) In this example only 10 index terms are fetched.

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML request>
<SoftboolXML request type="index">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<index field="Text" type="1" start position="!##*" max terms="10"/>
</SoftboolXML request>
</SoftboolXML requests>

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="index" error code="0">
<session>Userl</session>
<records field="Text" total="10"/>
<record term="C70" count="2435"/>
<record term="S40" count="7295"/>
<record term="S60" count="124"/>
<record term="S80" count="435"/>
<record term="V50" count="24"/>
<record term="V70" count="4435"/>
<record term="W11l6" count="10435"/>
<record term="W123" count="485"/>
<record term="W124" count="9439"/>
<record term="W210" count="48"/>
</records>
</SoftboolXML response>
</SoftboolXML responses>

The value that is found in ‘count’ reflects in how many records within the current result the term
appears.

Example 12 Get statistics of used query terms

In this case you want to fetch the 10 most common terms used when querying between 11.00
and 13.00 the 16th of June 2005. The terms should be presented in descending order; the most
common query terms first. It is query words (not strings) that should be fetched. The special
table containing query terms is named QueryTerms and the column containing the query terms
is called Terms.

The order should be ascending and you want to start from a term that is contained in 2.000 (or
the closest higher frequency) records.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML requests>
<SoftboolXML request type="index">
<open_ session name="Userl"/>
<database name="Statistics QueryTerms" />
<table name="QueryTerms"/>
<index field="Terms" type="14" order="desc"
start position="searchterms (20050616 11:00..20050616 13:00)"
max_ terms="10"/>

158

</SoftboolXML request>
</SoftboolXML requests>
<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records field="Terms" total="10"/>
<record term="TERROR" total="6007"/>
<record term="WAR" count="5968"/>
<record term="NASDAQ" count="3897"/>
<record term="DOLLAR" count="3787"/>
<record term="GOLD" count="2007"/>
<record term="LONDON" count="2004"/>
<record term="EU" count="986"/>
<record term="BUSH" count="712"/>
<record term="PRESIDENT" count="710"/>
<record term="ISLAM" count="687"/>
</records>
</SoftboolXML response>
</SoftboolXML responses>

The value that is found in ‘count’ reflects the number of times the term has been used when
querying Boolware during the specified time interval.

Example 13 Get records in specified rank order on specified term

This query will give all articles containing Volvo or Ford. This time you want the three (3) articles
to be fetched from the data source. The Columns you want information from are: Article no.,
Publishing date and Text. A maximum of 20 characters from each Column should be fetched.
You want articles where Ford appears most frequently presented first.

<?xml version="1.0" encoding="iso-8859-1"7?2>
<SoftboolXML_requests>
<SoftboolXML request type="query" queryhistory="1">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<query>FIND "Text":Volvo OR Ford</query>
<response>
<records from="1" count="3" rankterm="Text:Ford" maxchars=20>
<field name="Article no."> </field>
<field name="Publishing date"> </field>
<field name="Text"> </field>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

After this query the number of articles is 7.354.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records total="7354" from="1" to="3" rank="occ each term"/>
<record score="7">
<field name="Article no."> 8432 </field>
<field name="Publishing date"> 20000912 </field>
<field name="Text"> Article about Ford...</field>
</record>
<record score="5">
<field name="Article no."> 736 </field>
<field name="Publishing date"> 20000422 </field>
<field name="Text">Article about Volvo where Ford is mentioned..</field>

159

</record>
<record score="2">
<field name="Article no."> 12456 </field>
<field name="Publishing date"> 20000714 </field>
<field name="Text">Article about Saab where Ford is mentioned..</field>
</record>
</records>
</SoftboolXML response>
</SoftboolXML responses>

This time you will get the requested articles first where the word Ford appears most frequently.

Example 14 Get records in specified rank order on weighted columns

This query will give all articles containing Volvo or Ford from the year 2003. This time you want
the three (3) articles to be fetched from the data source. The Columns you want information
from are: Article no., Publishing date and Text. A maximum of 20 characters from each Column
should be fetched.

Words appearing in the Text column are more important than words from other columns so you
will set a weight on this column (all other columns will have a weight of 1).

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML requests>
<SoftboolXML request type="query" queryhistory="1">
<open_session name="Userl"/>
<database name="Newspapers"/>
<table name="Articles"/>
<query>FIND (Text:Volvo OR Ford OR Saab) AND "Publishing date":2003*</query>
<response>
<records from="1" count="3" rank="weightedoccurrency" rankweights="text=5"
maxchars=20>
<field name="Article no."> </field>
<field name="Publishing date"> </field>
<field name="Text"> </field>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

After this query the number of articles is 3.547.

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML responses>
<SoftboolXML response type="query" error code="0">
<session>Userl</session>
<records total="7354" from="1" to="3" rank="weight occ"/>
<record score="51">
<field name="Article no."> 4718 </field>
<field name="Publishing date"> 20030912 </field>
<field name="Text"> Article about Ford...</field>
</record>
<record score="46">
<field name="Article no."> 1622 </field>
<field name="Publishing date"> 20030422 </field>
<field name="Text"> Article about Volvo...</field>
</record>
<record score="21">
<field name="Article no."> 453 </field>
<field name="Publishing date"> 20030714 </field>
<field name="Text"> Article about Saab...</field>
</record>
</records>

160

</SoftboolXML response>
</SoftboolXML responses>

All occurrences of Ford, Volvo and Saab will be multiplied by 5 (column Text), while the date
(2003 in column Publishing date) will be multiplied by 1.

Example 15 Search in two databases with two requests

The first query finds customers using an interval search on customer id from a customer
database. Before fetching address information about the customers they are sorted on title and
name.

The second query finds distributers from London in another database . The address information
is sorted on name.

<?xml version="1.0" encoding="iso-8859-1" 2>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open_session name="" queryhistory="1" autotrunc="1" />
<database name="CustomerDb" />
<table name="Export" />
<query>FIND XML/customer/custNo:01410000..01410980 </query>
<response queryhistory="0" type="" href="">
<sort expression="XML/customer/title, XML/custom/custno" />
<records from="1" count="100" maxchars="0">
<field name="XML/customer/custName" /field>
<field name="XML/customer/custAddress" /field>
<field name="XML/customer/custZip" /field>
<field name="XML/customer/custCity" /field>
<field name="XML/customer/custPhone" /field>
</records>
</response>
</SoftboolXML request>

<SoftboolXML request type="query">
<open_session name="" queryhistory="1" autotrunc="1" />
<database name="DistrDb" />
<table name="Import" />
<query>FIND DistrCity:London </query>
<response queryhistory="0" type="" href="">
<sort expression="DistrName" />
<records from="1" count="100" maxchars="0">
<field name="DistrName" /field>
<field name="DistrAddress" /field>
<field name="Distrzip" /field>
</records>
</response>
</SoftboolXML request>

</SoftboolXML requests>

161

Chapter 4
Flows

This chapter describes how to use the Boolware Flow functionality.
See also the help function in Boolware Manager.

Overview

Flow Queries are scripts that are executed in Boolware server and are started via XML/JSON
requests i.e. via the XMLRequest API function or JSON-request via API-function execute. All
XML/JSON calls to Boolware starts with the root element 'SoftboolXML_requests' or an array of
'SoftboolJSON_request’ followed by elements to specify which database and table and what
functionality to use - e.g. "query" to perform a search.

To be regarded as a Flow Query the XML/JSON request must contain the following two things:

1. The query element has a 'flow' attribute which names the flow and
2. within the query element there is one or more named fields

<guery flow="match">
<name>Johnson</name>

<city></city>
</query>
"query": {
"@flow": "match",
"name": "Eriksson",
"city": "V

}

The script normally is stored in a file in the Boolware database directory, but could also be
specified directly in the call. The fields in in a flow query are regarded as input and a number of
functions in Boolware could be used to for example normalize the text, search in different ways,
make calculations and rank (set score on) retrieved records.

The flow scripts contain two different parts: one main part in XML and script functions that are
called together with variables to in an easy way program sophisticated searches.

Example of a flow:

<?xml version="1.0" encoding="UTF-8"?>
<flow>
<search text="str" dbfield="TelNo" goal="1" methods="word"/>
<if test="hitcount > 0">
<exit type="found" />
</if>
<exit type="notfound" />
</flow>

The XML part is a flow - a logical search strategy - with one entry point and several possible exit
points. The exit points are named and are used by the caller to decide the result of the query
(which path the query took).

Within the flow variables are used when searching and normalizing and by performing tests (if,

while, for) control what path the query should follow. The XML element if is for example used to
examine a variable and depending on the outcome takes one or the other path.

162

The search element performs a query in Boolware and returns information on the number of
found records in the system variable hitcount.

The XML elements while and for are used for loops; to repeat something several times.
The XML element set is used to set a value to a variable (could also be done using call script).

The XML element call and return are used to make call to script functions, procedures and other
flows.

The XML elements fetch, customrank, resultset, scoring and score are used to build custom
designed resultsets (Custom List).

Note that the XML element customrank is used to initialize the building of custom designed
resultsets. This implies that the elements resultset, scoring and score must be within the
element customrank.

This is described by the below simple flow "Matching":

<?xml version="1.0" encoding="iso0-8859-1"7?>

<flow>
<!-- Check if any input at all -->
<if test="len (compname) <= 0">
<print text="'No name specified in the flow query.' " type="comment"/>
<exit type="no input"/>
</if>
<!-- Search for the specified name in the field CompanyName -->

<search text="compname" dbfield="CompanyName" autotrunc="1" methods="word"/>

<!-- Just exit if no hits -->

<if test="hitcount <= 0">
<print text="'No match on specified name ' . compname . '.' " type="comment"/>
<exit type="no match"/>

</if>

<!-- Initialize Custom rank for custom designed resultsets -->
<customrank>

<!-- Clear earlier result -->

<resultset action="clear"/>

<!-- Add found records to Custom list -->
<resultset action="add" score="100" limit="200"/>

<!-- Do final ranking for found records -->
<scoring minscore="92" maxrows="50" use existing score="1">
<score var="compname" weight="95" norm="1" dbfield="CompanyName"/>
</scoring>
</customrank>
</flow>

Tests on terms specified in the flow query and queries could be outside the element
customrank, while the elements resultset, scoring and score must be within the element
customrank. An exception for the tag resultset with the attribute clear, action="" or action="sort",
which could be outside the element customrank.

The XML elements log and print are used for writing text, variables, results etc.

Flow Queries

Boolware can handle complex queries that include application logic. These are called "Flow
Queries", since they start at a point, and flows its way down through the defined search logic
(like a flow chart) until producing a desired result. An application can - in a single call - include
several query fields as well as logic how the fields should be processed in the query. These

163

rules can for example describe what to do if a search doesn't generate any results, or if it
generates "too many" or "too few" hits.

By using the XML elements: customrank, resultset (described below) you could rank the
retrieved records in another order that you could using the standard Boolware sort and rank
functions.

Queries are passed as XML to Boolware. Three parts can be identified:

1. The query (query)
2. The flow description (flow)
3. The response (response)

The XML is such that the query semantics are indisputable. The flow description is also coded
as XML.

This is an example, where an application sends an address record for retrieval of similar
candidates.

<?xml version="1.0" encoding="UTF-8"?>
<SoftboolXML requests>
<SoftboolXML request type="query">
<open session name="user"/>
<database name="ATLAS"/>
<table name="Companies"/>

<query flow="match"
<name>JOHN PARTRIDGE</name>
<address>10 UPING STREET</address>
<zip>WE 1212</zip>
<city>STRATFORD ON-AVON</city>
</query>

<response type="" href="" queryhistory="0">
<records from="1" count="20">
<field name="*"/>
</records>
</response>
</SoftboolXML request>
</SoftboolXML requests>

Note that the query consists of an actual record with four fields. The field names are used as
XML element names, and there is a reference to a named "flow": match.

The flow is stored as an XML document at the server, in the current database directory. The
flow below is an example of matching logic.

First you attempt an exact match using all four fields (search field=""). If this gets exactly one
hit, a <response> is sent back immediately. Otherwise the flow continues by attempting to find
the name using gradually decreased precision (first near, then word and finally sound), until the
goal of 10 hits is achieved.

If no records were found, a note about this is made in the log. Otherwise the selection continues
by querying the other fields one at a time, using AND logic. The result is kept if it doesn't go
down to zero, no hits. (zeroback="1")

In the following example the names of the search fields are the same as the corresponding
column names in the table. In other words the table contains the columns: name, address, zip
and city.

The flow 'match’ (flow file: match.flow.xml):

<?xml version="1.0" encoding="iso-8859-1"7?>

164

<flow>

<!-- Try full match first -->
<search field="*" goal="1" methods="word"/>
<if test="hitcount == 1">
<exit type="found"/>
</if>
<!-- Must find at least 1, using company name (stop when 10 found) -->

<search field="name" goal="10" methods="near,word, stem, sound"/>
<if test="hitcount == 0">

<log type="error" msg="not found"/>

<exit type="error"/>
</if>

<!-- Include fields that generate hits, ignore other fields -->
<search op="and" zeroback="1" field="address" goal="10"
methods="word, sound" />
<search op="and" zeroback="1" field="zip" goal="10" methods="string,word"/>
<search op="and" zeroback="1" field="city" goal="10" methods="string,word"/>
<log type="choice" msg="alternatives"/>
<exit type="choice"/>
</flow>

Another query that calls the flow named ‘match’ (the 'match.flow.xml' flow file):

<?xml version="1.0" encoding="iso-8859-1"?>
<SoftboolXML requests>

<SoftboolXML request type="query">

<open_ session name="user"/>

<database name="db"/>

<table name="table"/>

<query flow="match">
<name>BLUE LADY</name>
<address>12 rue de rien</address>
<zip>12345</zip>
<city>ANTIBES</city>

</query>

<response queryhistory="0">

<records from="1" count="20">
<field name="*"/>

</records>

</response>

</SoftboolXML request>

</SoftboolXML requests>

Here is an example of an inline flow (passed as part of the query).

<?xml version="1.0" encoding="iso-8859-1"7?>
<SoftboolXML requests>

<SoftboolXML request type="query">
<open_session name="user"/>

<database name="Atlas"/>

<table name="Companies"/>

<guery flow="test">
<name>JOHN PARTRIDGE</name>
<address>10 UPING STREET</address>
<zip>WE 1212</zip>
<city>STRATFORD ON-AVON</city>

</query>
<!-- <response queryhistory="1"> -->
<response raw="1" quotes="0" fieldsep=";" rowsep="\r\n" queryhistory="1">

165

<records from="1" count="20">
<field name="name"/>
<field name="street"/>
<field name="zip"/>
<field name="city"/>

</records>

</response>

<flow>
<!-- Company name given -->
<if test="len (name)== 0">

<log type="Warning" msg="Company name is empty"/>
<exit type=" Company name is empty "/>

</if>
<!-- A unique match -->
<search field="name" methods="word"/>
<if test="hitcount == 1">
<exit type="Single match found"/>
</if>
<!-- No hits. If so, try phonetic search -->
<if test="hitcount == 0">

<search field="name" methods="sound"/>

<if test="hitcount == 0">
<log type="Warning" msg="No phonetic hits, trying again with two words
removed from the right"/>

<!-- Drop the two rightmost words -->
<call script="dropterm(name, right, 2)"/>

<!--and try new phonetic search -->
<search field="name" methods="sound"/>

<if test="hitcount == 0">
<exit type="Still no hits.."/>
</if>
<log type="Info" msg="Matches on name, continue with street"/>
</if>
</if>
<!-- AND address..... -—>

<search op="and" field="street" methods="word"/>
<if test="hitcount" op="eq" value="0">
<search cmd="back"/>

<!-- Increase street nos. by 4 both ways and retry... -->
<call script="numrange (street, 4)"/>

<!-- and retry -->
<search op="and" field="street" methods="word"/>

<if test="hitcount == 0">
<exit type="No hits after street no range"/>
</if>

<log type="Info" msg="Hits in both name and address, press on"/>
</if>

<!-- ...continue with zip and city as long as matches remain -->
<search op="and" zeroback="1" field="zip" methods="string,word"/>
<search op="and" zeroback="1" field="city" methods="string, word"/>
<log type="Info" msg="All fine, list of found records"/>
<exit type="OK"/>

</flow>

</SoftboolXML request>
</SoftboolXML requests>

166

Variables

The fields in a flow query are called variables. These variables could be "read"” from the flow,
but should not be manipulated. If you want to "change" these variables you should move them
to own defined variables. A variable name is case sensitive and must not have name such as a
function name e.g. a variable name cannot be ‘string’ etc.

A variable has a name and its value could be changed. Own variables could be created and
modified in a flow using the function set or call script.

Examples:

Set the variable namel to the input parameter CompanyName:
<set var="name2" value="CompanyName"/>

The following syntax may also be used instead of the above:
<call script="name2 = CompanyName"/>

Set the variable name2 to the string constant Johnson:
<set var="name2" string="Johnson"/>

The same as above but uses the attribute "value" instead of attribute "string".

Note: In this case we must enclose the string constant in single quotes:
<set var="name2" value="'Johnson'"/>

The following syntax may also be used to set the variable name2 to the string constant:
<call script="name2 = 'Johnson' "/>

Some variables are already defined (reserved words) for the Flows. That means that they
already exist and are maintained by Boolware; thus do not use own variables with these names:

bwdocno — document number of the last fetched tuple

bwhostip — ip-address of the Boolware server running the current flow
bwhostname — computer name of the Boolware server running the current flow
bwsessionip — ip-address of the calling session running the current flow
bwsessionname — session name of the calling session running the current flow
chewpos — position in the input string in a CHEW function where a substring

was found and was cut out, this is an array of positions if multichew
The chewpos is 1-based and value 0 indicate that nothing have
been cut out from the string
currhitcount — number of records in the current search result for the currently
searched table
sub result for the current query before the command is performed
from the currently searched table

currintermediateresult

errmess — the latest error message from Boolware when retcode wasn't 0
errmessarray — all error messages during the execution of a flow
executeresponse - message buffer containing output from the flow element execute
hitcount — number of records in the current search result for the table specified
— in the current XML request
intermediateresult — sub result for the current query before the command is performed
paramcount — number of parameters sent to a proc
retcode — the return code from the last called proc or call to Boolware
row — the currently read record
rowcount — number of records in a custom (customrank)
termzerobacked — true if any term in the query caused a zero result and the term was
ignored in the search
termzerobackedarray — contains the terms that didn’t give any result in the current query
trigterm — ifatermis found in the function WASH in the triggerwords, the base
synonym of this term will be saved in this global system variable
warnmess — the latest warning message from Boolware when the retcode
was >0

167

warnmessarray — all warning messages during the execution of a flow

xmlrequestdatabase — name of the given database in the XML request
xmlrequestflowname — name of the main flow in the XML request
xmlrequesttable — name of the given table in the XML request
zerobacked — true if the query has been backed caused by a zero result and
zero back
Fetch rows

In a flow you can fetch rows from a result set with the XML element "fetch". The predefined
variable "row" will contain the row that was fetched.

You could specify if you want to fetch a row from the current search result or from the current
Custom List (see details in description of the function Fetch).

Example: Fetch the content from all columns from the first retrieved record:
<fetch row="1" cols="*"/>

To retrieve column data from a row do you use the following syntax:

row [columnName]
row[columnNamel]
row[columnName?] ...

The score for a row can be retrieved using the special column name '‘@score.’
Use "' to concatenate column data.

Example:
<print text="row['FName'] . ' ' . row['LName'] . ' Score:' . row['@score']l"™ />
You could also get records from another table within the current database:

<fetch table="table name" row="1" cols="*"/>

Strings, numeric and arrays

The variables could be of type string, numeric or array. Type numeric should be used on
variables that is part of a calculation; divide, multiply etc. Strings are - in principal - all other texts
such as: Name, Address, City etc.

An array is a numbered list of values. For example the string "Mercedes-Benz SL500" could be
split into "words" and be put in an array-variable (see section describing split for more
information):

arry = Split ('Mercedes-Benz SL500', '-,; ')
The result will be an array containing four "words":

arry = array (
0 => Mercedes
1 => Benz

2 => SL

3 => 500

168

)

The variable arry contains four "words"; arry[0] to arry[3]. You could use the function length to
test the number of elements in the current array; in this example it is 4.

Procedures and calls to other flows

Within a flow you could define procedures. A procedure is a sub-routine that could be called
with different parameters.

<proc name="WashSplit">
<call script="$P1 = wash($P1l, '@namewash.txt')"/>
<call script="words = split($P1, '/.,-\b")"/>
</proc>

In the example above a callable procedure with the name "WashSplit" is defined. It could be
called anywhere in the flow. In the following example it is called with company name as a
parameter:

<call proc="WashSplit" Pl="company name"/>

You could also call another flow. When the called flow terminates the control is returned to the
calling flow.

<call flow="second"/>

Macros and parameters

Parameters to procedures are sent as "P1", "P2" and so on.

As all variables are global - except those which have a leading under score () - it is in most
cases more efficient to use them directly instead of using parameters.

To be able to refer to the value in the parameter macro expansion is used. By preceding the
variable with a dollar sign ($) you will get the value of the variable.

This strategy is also used in the search tag when you want to perform a search via the attribute
cmd.

Example:
<search cmd="find street:$street and zip:$zip"/>

If you "escape code" the dollar sign (using a backslash \$) Boolware will interpret it as a dollar
sign and not as a macro.

Example:
<search cmd='find "\$freetext":cars'/>

In this case Boolware will treat $freetext as a column name when searching and not as a
macro.

Example:
<call script="arr = Match('Make \$50,000.00 fast with this no risk system',
NANSANNA{T, 3 (GANA{31) * (AN AN {2}) 2\\b"'" />

In this case ‘... \$50,000.00 ...’ the ‘$’-sign will not be interpreted as a macro and the ‘$’-sign in
the regex-expression will end up with the escape sign in the regex-engine.

169

String compare

To be able to tell the similarity between two strings: "Fred E. Anderson” and "Freddy Anderson"
a compare function is used internally which gives the likeness in number of errors.

The function - Compare - is adapted to be tolerant and is available from a flow.

By tolerant means that it accepts spelling errors and different spellings.

Normalizing

Before a compare takes place it is very important to normalize the strings; to make all
characters upper case, remove diacritical marks etc.

In Boolware there are a number of functions for normalizing of strings which could be used. For
example could phonetic coding be used causing words sounding alike will be treated as alike
even if the spelling differs.

You could also take advantage of powerful search and replace functions based on the "RegEx"
standard. This makes it possible to make own functions for "washing" and normalizing the data
before the compare takes place.

See separate documentation on RegEx for more information.

Weighting

As some fields are more important than other as identification you could set different weights on
different columns. For example is social security humber and name a stronger identification than
city or address as you move more often than changing your name and social security number.

The weight is specified as percent where 100 means "full weight" and 50 as "half weight". In the
example: social security number, name, address and city a weighting could be: 100, 90, 50 and
30 respectively.

A weight of 50 makes a difference less significant compared to a weight of 100. The weighting is
used within the elements score and scoring.

For more information and examples see section Scoring below.

Description of scoring

Scoring is a result of the comparison between the fields read from the database and what you
have been searching on. The result of the comparison is controlled by different weights and
parameters and is saved as a score.

The found records could later on be sorted descending on the current score and thus the most
similar records will be presented first.

The XML element "scoring" is used to set up rules for how to rank found records. Scoring
contains one or more "scores"; one per field.

Example:

170

<scoring maxrows="10" minscore="93" >
<score var="name2" weight="90" norm="131" dbfield="Last+First"/>
<score var="street2" weight="50" norm="129" dbfield="Street"/>
<score var="zip2" weight="100" norm="1" dbfield="Zip"/>
<score var="city" weight="40" norm="1" dbfield="City"/>
</scoring>

In the above example you could see that "scoring” will produce the 10 best hits. However, to be
approved no score could be less than 93 (100 - no. of errors).

Each score element describes how to treat a field. The content of the field in the query form
(mostly "massaged") (var) will be compared to the corresponding field(s) in the database
(dbfield) in each found record.

The "massaged" field from the flow query saved in the variable name2 will be compared to the
concatenated values from the fields Last and First in the database.

Different degrees of normalization could be performed before the two strings are compared.
This normalization is controlled by the attributes: norm=, sortwords=, noice=, namefile=, Ith=,
leftmost=, synfile=, washchars= and condignore=.

norm See the string function Normalize().

sortwords 1 = sort the words, 2 = sort the characters, 3 = test all combinations between the
words and choose the one that gives the best similarity.
1 should be used in this case Johnson Ben and Ben Johnson.
2 could be used when dealing with words that sometimes are written together and
sometimes are written apart: e.g. Ann Marie Johnson, Ann-Marie
Johnson, Annmarie Johnson.

noise Is a comma separated list with words that should be ignored before the
comparison takes place. For example "Rue des Herroniers, Rue de la
Heronnerie"; noice="des, de, la" will ignore these words when the comparison
takes place.

namefile Could be used to separate common male and female names. By writing a file
containing all common female name, one name on each line, you could use this
to distinguish between men and women.

Ith Only compare the x first characters.
leftmost Higher score the earlier in the text the word is found.
synfile The file that contains synonyms used by Leftmost. When using leftmost you could

specify synonyms for special words. For example you could specify the following
synonym: ltd(limited, inc, incorporated, corp). When testing in leftmost all
synonyms will be used in the comparison.

washchars Is used to "wash" certain characters from a text. Could be used to get rid of
periods (.) commas (,) etc.

condlgnore A very special attribute. Is used to determine if a compare should be skipped
conditionally depending on if the previous field matched the first or second
reference field.

See section "score" below to get more information.

Custom scoring

Boolware offers complete flexibility when it comes to ranking, as it allows you to program a
custom module in C/C++ and use it instead of Boolware to compare tuples.

Boolware's built-in scoring is based on the score-element, used inside scoring, e.g:

<scoring maxrows="10" minscore="73">
<score var="fname2" weight="50" norm="3" dbfield="fnamn"/>
<score var="lname2" weight="50" norm="3" dbfield="enamn"/>

171

<score var="pnr2" weight="100" dbfield="personnr" 1lth="8"/>

<score var="street2score" weight="50" norm="259" dbfield="street"/>

<score var="cityscore" weight="40" maxwords="4" dbfield="postort"/>
</scoring>

Custom scoring is activated by naming the custom DLL in the custom attribute of the scoring
element. When Boolware sees this it'll send all comparison tuples to this external DLL. You can
pass your own parameters to the DLL, as everything that stands within the scoring tag is sent to
the external DLL:

<!-- Scoring will be performed by a plugin -->
<scoring maxrows="S$maxRows" custom="xm" minscore="S$lowScore" use existing score="1">
<param>

<search group id="Name">
<search field id="Company Name">
<match rule id="Same words and same order" reduction="1" weight="40"/>
<match_rule id="Same words but different order" reduction="2" weight="35"/>
<match rule id="Fewer search words but all match" reduction="3" weight="20"/>
</search field>
</search group>
</param>

</scoring>

The external module shall be programmed as a DLL on Windows, and as an .so file on Linux. It

should be placed in the Boolware program directory and must have certain entry points. Further,
the name must be on the format e02.modulename.dll or .so, depending on platform. In Chapter

10 "Plugins" description of how to write and registrate the external module is found.

Reduction of score when searching and manual scoring

Automatic scoring is often used by help of the scoring and score tags. This is a way to get an
overview to collect variables like weight and retrieved fields in one place.

In some cases it is preferable to make an own scoring controlled by the fields searched on and
the score used when the records were saved by resultset add. The XML element search could
in this case be used to reduce the score if the for example searched data was found in the
"wrong" field. If for example the name of the company was not found in CompanyName but in
an extra information field it should perhaps result in a lower score - reduction of score.

The value to be reduced from the score should be specified in the dbfield within parentheses:

Example:

<search field="name" dbfield:"company_name,extra(7)"/>
<resultset method="add" score="95"/>

If name is found in company_name no reduction occurs, but if it will be found in the field extra a
reduction of 0.7 will be made and the final score will be 88 (95 - 7).

Summary

. Queries are coded as XML, using field names as XML element names.
. Flows are coded as XML, at the server with the ".flow.xmlI" extension.

. Flows can be edited in Manager.

Flow elements - reference

Below all available flow elements (tags) will be described.

172

break

<break [id="name"]/>
Is used together with for and while to terminate a loop before the specified condition is met.

If nested loops are use you could name the different loops and use this name to break the
proper loop.

See examples below in for and while.

call flow
<call flow="name [Pl=(value) P2=(value) ... 1/>
Calls another flow with a given name and passes parameters if any.

The called flow could use the variable "paramcount" to get the number of parameters.
Each parameter is referred to as "P<number>"; P1 for the first parameter.

If the called flow calls exit both flows will terminate else the control is returned to the calling flow.

The flow could return a value using the element return.

Example: call another flow "second.flow.xml" if "zip" is empty.

<if test="length(trim(zip))" op="eqg" value="0">
<call flow="second"/>
</if>
call proc
<call proc=(name) [Pl=(value) P2=(value) ...]/>

Calls a defined procedure and passes parameters (if any).

The called procedure could use the variable "paramcount" to get the number of parameters.
Each parameter is referred to as "P<number>"; P1 for the first parameter.

The procedure may return a value using the return-element.

Another way to communicate with other procedures is to use global variables; see element set.

<proc name="log">
<for loop="j" from="1" to="hitcount">
<fetch cols="$P1"/>
<log type="data" script="row[$P1]"/>
</for>
<return value="1"/>
</proc>

173

<call proc="log" Pl="zip"/>

call script

<call script="name"/>

Call another function. See section Functions and variables for approved values.

In many cases this XML element is synonym with <set/>.

<call script="xxx = 'yyyyyyyyyyy' . 'zzzzzzzzzzzzz' . 'WwWwWwwwwwwwwww'"/>
Example: call another function to erase a word from a search field.

<call script="dropterm(name,right,1)"/>

Example: assign a new value to an array element.

<call script="names[2] = 'Joe'"/>

continue

<continue [id="name"]/>

Is used together with for and while to continue the iteration in the loop without going to the end
of the loop.

If nested loops are use you could name the different loops and use this name to do continue in
the proper loop.

The command <next/> is a synonym to <continue/> see below.

See examples below in for and while.

customrank

<customrank [duplicates='0'] [resetresult='1l'/>

Tells that you want to order (rank) the records in a special (own) way. The attribute duplicates
tells whether duplicates should be included, the attribute 'resetresult' tells whether the previous
custom result should be cleared or not.

You could save the ranked records in a special list using the resultset-element.

After that you could compare each record with the search string and get a score, which tells the
likeness (100 = identical). By help of the element scoring you could reset the score of the
retrieved records.

How the comparison should be done is determined in the element score.

When all records have got a new score they will be sorted (descending) on this value before
presentation.

The newly ranked resultset will be activated when the XML element customrank will be closed.

174

else

<else/>
Could only be specified together with 'if* and take care of the "alternative" path.

<!-- Searches for 'name' and checks for 10 and 50 found records -->
<search field="name" methods="near"/>
<if test="hitcount" op="gt" value="10">
<log type="Info" msg="More than 10 records found"/>
<else/>
<if test="hitcount" op="eqg" value="0">
<log type="Info" msg="No records found"/>

</if>
<log type="Info" msg="Records found; less than 10"/>
</if>
elseif
<elseif test="(variable) </<=/==/>/>=/!= (variable)"/>

Could only be specified together with 'if'.

<!-- Searches for 'name' and checks for 10 and 50 found records -->
<search field="name" methods="near"/>
<if test="hitcount" op="gt" value="10">
<log type="Info" msg="More than 10 records found"/>
<elseif test="hitcount" op="eq" value="0"/>
<log type="Info" msg="No records found"/>
<else/>
<log type="Info" msg="Records found; less than 10"/>
</if>

execute

<execute cmd=(string) />

Perform an execute command and store the result text buffer in the flow system variable
executeresponse. Note that not all execute commands will produce a textbuffer.

<!-- Perform an orsearchex and fetch the first 10 terms that gave zero result
-=>

<flow>

<search cmd="FIND companyname:orsearchex(ab, 1ltd gmbh) "/>

<execute cmd="fetchnotfound table=CompanyTable from=1 count=10"/>

</flow>

Examine the system flow variable executeresponse to see the outcome of the execute
command.

exit

<exit type=(string) />

175

Terminates the flow. The value "type" is returned to the calling routine as an attribute in the
response so that the caller knows which exit point has been used.

The application could also get the name of the exit point by the Execute API:
Execute("getexitpoint™).

fetch

<fetch table="tablename" row="num" cols=(col/*) maxrows="num" maxchars="num"
result="1/0" fetch customlist="1/0" sort="" randomfetch="0/1"/>

Fetches a record from the current result or from the Custom List. The first record is 1. If the
attribute "row" is omitted the next record will be fetched.

If the rows should be fetched from the current search result or from the Custom List depends on
in what status you are (inside or outside the <customrank/>).

By using the attribute "fetch_customlist" you tell explicitly that you want to fetch rows from the
Custom List (if there exists such a list).

If a table name - other than the main table - is specified the rows will be fetched from the current
result of this table.

If rows have been saved in the Custom List and you have left the element <customrank/> the
rows will be fetch from the Custom List.

In all other cases the rows will be fetched from the current result in the main table.

The columns to be fetched are controlled by the attribute "cols", can be comma separated. The
content of a column is read by using the syntax: "row[column name]". An asterisk (*) instead of
column name means all columns.

Only columns that have been specified in the fetch could be retrieved using the
"row[column name]".

In "maxrows" you specify the maximum number of rows to fetch. At the first call to fetch a
certain number of rows are "cached" in memory to avoid reading at each fetch. This attribute is
only used to optimize the "cache"; if you just want to fetch 5 rows only 5 rows will be "cached" at
the first call.

The attribute "maxchars" tells the maximum number of characters to fetch from each column. If
this attribute is zero or omitted all characters from all columns will be fetched.

The attribute "sort" might contain a sort expression to receive rows in another order than
database source order.

The attribute "randomfetch" can bet set to "1" if random fetch order is required.

If you want to fetch the current result (number of found records) from a table that is not the main
table the attribute "result" in combination with the attribute “table” should be used. The result will
be saved in the global system variable currhitcount. The current result of the main table could
always be found in hitcount.

A fetch without any attributes will read all columns from the next record.

When trying to fetch records outside the search result an error occurs and the flow will
terminate.

176

<!-- Read next row and log column "zip" -->
<fetch cols="zip"/>
<log type="data" script="row[zip]"/>

flow

<flow>

Root node of the flow

flow_input

<flow_input>

This element can contain <parameter> elements that can be obtained by applications
The element <flow_input> must only occur once in a flow and must occur first in a flow, before
possible <include> elements.

Example:

<flow>
<flow_ input>
<parameter name="Name" type="data" defaultvalue="" description=""/>
<parameter name="Address" type="data" defaultvalue="" description=""/>
</flow_ input>
</flow>

for

<for loop=(var) from=(expr) to=(expr) step=(expr) [id="name"]>

A for-loop is used to iterate a certain number of times. The number of times is controlled by the
variable "loop".

The variable "loop" will be created if not present. It is regarded as an error to modify the variable
"loop". If it is necessary the while-loop should be used instead.

By using the attribute "id" you could give the for-loop a name, which could be used by the
commands <break/>, <next/> and <continue/>. This is useful when using nested for-loops.

If you want to leave a loop before the specified condition is met you could use the command
<break/>. This command could also be used to leave a named (outer) loop, when you are using
nested loops.

Another useful command is <next/> or <continue/>. This command is used when you want to
continue with the next iteration without go to the end of the loop.

<!-- Checks passed parameters, exits if any is empty -->
<for loop="i" from="1" to="paramcount" step="1">
<if test="length (Pi) == 0">
<exit type="empty"/>
</if>
</for>

177

An example of how to use the <break/> command.

<!-- Checks passed parameters, exits if any is empty -->
<proc name="LoopBreak">
<call script="words = array('one', 'two', 'three', 'four')"/>
<!-- Two for-loops and one while-loop demonstrates the break command -->
<for loop="i" from="0" to="length(words) - 1" id="outer">
<for loop="j" from="length (words) - 1" to="0" step="-1" id="inner">

<set var="k" value="0"/>
<while test="k < 10">
<set var="k" value="k+1"/>

<if test="j == 2">
<break/>

</if>

<if test="j == 1">
<break id="inner"/>

</if>

<if test="j == 0">
<break id="outer"/>

</if>

</while>
</for>
</for>

</proc>

An example of how to use the <next/> and <continue/> commands.

<!-- Two for-loops and one while-loop demonstrates the next command-->
<proc name="LoopNext">
<call script="words = array('one', 'two', 'three', 'four')"/>
<for loop="i" from="0" to="length (words) - 1" id="outer">
<for loop="j" from="length (words) - 1" to="0" step="-1" id="inner">

<set var="k" value="0"/>
<while test="k < 10">
<set var="k" value="k+1"/>
<if test="j == 2">
<next/>
</if>
<if test="j == 1">
<next id="inner"/>
</if>
<if test="j == 0">
<continue id="outer"/>
</if>
</while>
</for>
</for>

<if test=(variable) op=lt/le/eq/ge/gt/ne value=(string)>

An other - more straight forward way - to specify an if-statement is:

<if test=(variablel </<=/==/>=/>/!'= variable2)>

Test a variable and follows one of two paths depending on the result of the test. Approved
variables - except own defined variables - to test on are the global system variables.

178

The variable "hitcount" is the total result after the specified command has been performed while
"intermediateresult” is the sub result of the current query.

Example of test of an interval:

<if test="len(name) > 0">

<!-- Searches for ‘name’ and checks for between 10 and 50 found records -->
<search field="name" methods="near"/>
<!-- Test an interval -->
<if test=" (hitcount >= 10) AND (hitcount <= 50)">
<!-- .. perform something .. -->
</if>
</if>

If the query has been performed in another table than the one specified in the XML request (the
main table), the result will be stored in "currhitcount”; in "currhitcount" you could always found
the result from the last searched table.

<if test="len(zipcode) != 0">
<!-- Searches for 'zipcode' in table Table2 -->
<search cmd="Tables(Table2) Find zip:$zipcode" autotrunc="0"/>
<!-- If the result is between 10 - 50 do something -->
<if test=" (currhitcount >= 10) AND (currhitcount <= 50)">

<!-- .. perform something .. -->

</if>

</if>

include

<include file=(string) />
Include must be defined before the main flow begins.
Include another flow. Useful for common procedures and variables.

The attribute "file" must not include the directory path of the file name. Boolware will supply the
path automatically.

<!-- Include shared procedures and declarations -->
<include file="global.flow.xml"/>

<log type=(string) msg=(string) script=(expression) vars=(string)
fields=(string) />

Creates a line in a lodfile. Fields are separated by semicolon.

The attribute "type" is always written first.

If "script" is used the result of "script” will be written otherwise the "msg" will be written.
If "vars" or "fields" are given the values will be written.

"fields" refers to original query fields in the "query" element.
An explicit field could be given or "*" for all given fields.

179

"vars" refers to variables and changed field values. i.e. after a call to "dropterm” on a field the
new value can be inspected by using "vars".

The lodfile is written in the directory specified in Boolware. The name of the logdfile is same as
the name of the flow with the extension ".log". If the name of the flow is test the name of the
logfile will be: "dbname.flow.test20080120.log".

An example of a line in the logfile:

choice;msg;name=higgins; street=;zip=16866;city=1lipton

next
<next [id="name"]/>

Is used together with for and while to continue the iteration in the loop without going to the end
of the loop.

The command <continue/> is a synonym to <next/> see above.

If nested loops are use you could name the different loops and use this name to do next in the
proper loop.

See examples below in for and while.

output
<output print="1"/>

The attribute print=0 could be used to block all print in a flow.

Example:
<output print="0" />
<print text="'A string...’"™ />
parameter
<parameter name="paramname" [type="" defaultvalue="" description=""]/>

This element must contain the attribute name with a proper value, other attributes are optional.
The element must reside within a <flow_input> element.

These elements can be obtained by an application to get information about a specific flow via
flowinfoparameters command.

print
<print text=(script) type="elementname" stricttype="0/1"/>

The print-element will write text to the print buffer. The print buffer is a part of the XML response
that can be used as an informative text and is enclosed by the tag <print> in the response.

180

The attribute stricttype is default "0", which means that if type contains a valid element name,
e.g. "comment"”, an element with the name <comment>, will be created and will also contain the
printed output. If stricttype is set to "1" the printing will not be printed in the <print> element
only in the given type element e.g <comment>.

Example:

<proc name="PrintRecord">

<print text="row['Company id']" />

<print text="row['First Name'] . ' ' . row['Last Name'] . ' - Phone:'
row['PhoneT] . ' - Score:' . row[‘@gcore']" />

<if test="len(row['Member Last Name'])" op="gt" value="0" >

<print text="row['Member First Name'] . ' '
row['Member:Last_ﬁame']" />

</if>

<print text="row['Street Name'] . ' ' .
row['House No or Entrance No']" />

<print text:"row['Zip']_. o, row[‘Pgstal_Name']" />

<print text="'----- />

</proc>

proc

<proc name=(name)>
Proc must be defined before the main flow begins.

Declaration of a procedure. A procedure is a callable bunch of instruction that can return a value
to the caller.

The procedure can use the global system variable "paramcount"” to determine the number of
input parameters. Each parameter is referred to with the syntax P<number>, e.g. P1 for the first
input parameter.

The procedure can return a value through the element return. Values can also be passed
through global variables.

Example:

<proc name="log">
<for loop="j" from="1" to="hitcount">
<fetch cols="zip"/>
<log type="data" script="row[zip]"/>
</for>
<return value="1" />
</proc>

The caller could test the return value in the variable retcode.

resultset

<resultset action=(string) rowstodelete=(value) limit=(value) score=(value)
sort=(expression) sort customlist=(value) subtractscore=(value) hitno=(value)
rankmode= (value) randomfetch=(value) duplicates=(value)

use existing score=(value) customrankexit=(name) customrankselection=(name)
customranksearchcriteria=(arg) customrankautotrunc=(value)
customranklimit=(value) />

181

The resultset is used to produce a ranked searchresult.

The following attributes are applicable in the resultset entity:

action

rowstodelete
limit

score

sort
sort_customlist
subtractscore

hitno

rankmode

randomfetch

duplicates

use_existing_score

customrankexit

customrankselection

"add" to add records to the Custom list

"clear" to delete all records from the Custom list

"excludefrom” remove records from the Custom list

"sort" or " to sort the Custom list or the current search result

If action is omitted "add" will be used.

only valid in conjunction with action=excludefrom. Tells how many records to

delete from hitno; default is all records from hitno

maximum amount of records to be stored. Default 200000

the "score" that will be applied on records. Default 100

sort expression applied before records are stored in Custom list

if sorting should be done on the Custom list or the current search result

0 - sort the current search result; default 0.

1 - sort the Custom list

1 - if score reduction occurred in the search-element. Default 1

0 - if no reduction should be done

is used in conjunction with action="excludefrom" to remove this record and

all following records. Default 2

re-rank record that should be added; the following rank modes are valid:

0 - No ranking; default

1 - Rank by occurrence

2 - Rank by frequency

6 - Rank by weighted occurrence

7 - Rank by weighted frequency

10 - Rank by string distance from previous fuzzy search

0 - if no random fetch should be done; default 0.

1 - if the records should be stored in random order rather than in the same
order as they appear from the data source.

0 — only one duplicate record with the highest score is saved

1 — all duplicate records are saved regardless of score value

If omitted the duplicates specified in customrank will be used.

0 - Do not use existing scores, instead the given value in

the attribute score will be used, default.

1 - Use existing scores e.g. sort/rank will be made within existing
score groups but position adjusted based on the given value in the
attribute score

the name of the custom ranking plugin to use

the name of the ranking criteria to be used

customranksearchcriteria the search arguments that was used for each ranking field. The

search arguments for each ranking field are separated by a comma
character. In order for the e04.customrank plug-in to be able match
the search arguments with the correct ranking field, it is important that
the search arguments for respective ranking fields are listed in the
same order as they were specified with the configuration parameter
"fieldnames", in the plug-in configuration.

Example:

In the e04.customrank configuration, we have specified the following
ranking fields:

fieldnames = company_name, address, city
We then search for "McDonald's" in the field "company_name" and

"Stockholm" in the field "city".Now we need to specify search
argument as follows:

182

customranksearchcriteria = "McDonald's,,Stockholm"

Since we did not search in the "address" field, we do not have any
search arguments for this field. But we must always include all ranking
fields when we specify the "customranksearchcriteria”, so we leave it
blank but mark the field's presence with an additional comma
character.

customrankautotrunc 0 - Rank without truncated search arguments, default.
1 - Rank with truncated search arguments

customranklimit maximum number of items to be ranked

customrankgeodistance here you can specify a centrum coordinate and a radius in meters. All
hits within the specified circle will be ranked by how close they are to
the centrum coordinate .

customrankuserdata this attribute can be used to send user-defined data to a custom
developed customrank module.

The sorting of records could be done in three ways:

1. When you add records to the Custom list (action="add") and a sort expression is specified in
the attribute sort the records will be sorted in requested order before they are stored in the
Custom list.

The sort have the following precedence randomfetch, customrankexit, sort and rankmode.

2. When you exclude records from the Custom List (action="excludefrom") and a sort
expression is specified in the attribute sort, sort the records in the Custom list before the
records are removed from the Custom list.

3. If only sort should take place (action="sort") or (action="") and a sort expression is specified

in the attribute sort. With the attribute sort_customlist="0/1" the sort expression is applied on

either the current search result or the records in the Custom list.

return

<return value= (expr) />

Terminates a called procedure or flow and returns a value to the caller. The returned values are
numeric. If the attribute "value" is absent the return value will be 0.

Example:

<return value="-1"/>

Score

<score var=(string) dbfield=(string) dbvalue=(string) condignore=(string)
namefile=(string) weight=(value) norm=(value) leftmost=(value)
synfile=(string) washchars=(string) spacechars=(string) noise=(string)
sortwords=(string) lth=(value) irregnames=(string) maxwords=(string)
wash=(string) samewords=(string) trywithout=(string)
samewords phon punish=(value) streetno punish=(string) condvar=(string)
condflag=(value) honor empty data=(value)/>

The score is used to calculate the score value of records that are saved under the element
"resultset".

183

By describing which columns that should be compared and then apply rules for the comparison
a score is obtained for each record. If the score value exceeds the value specified in the
attribute "minscore” in the element "scoring"” the value is applied to the record; if not the record

is removed.

The following attributes are used in the score element:

var
dbfield
dbvalue
condignore

namefile

weight
norm

leftmost

synfile

washchars

spacechars
noise

sortwords
Ith
irregnames

maxwords

wash
samewords

trywithout

samewords_phon_punish

streetno_punish

condvar
condflag

honor_empty_data

search field

field to compare

value instead of content of dbfield to be compared

used to determine if a comparison should be skipped conditionally
depending on previous field matched the first or secondly referenced
field. Any value activates this function.

input file to specify certain typically female names to distinguish

from similar male names to prevent the same "score".

weight on the field; the higher importance the higher weight.

specify what normalize method to use, see function "Normalize"
below.

higher score the earlier in the text the word is found. If >0 this function
will be activated.

when leftmost activated you could specify synonyms. E.g. specify the
following synonyms: Ltd(limited, corp, corporation). When using
leftmost the specified synonyms will be used when performing the
compare.

remove specified characters from the string before comparison take
place; e.g. remove space characters in a zip code field

as washchars, but replaces certain chars with space.

list of words that should be removed before the comparison takes
place; noise="de la le af von" in name fields

before the comparison takes place; no sort (0), sort the words (1), sort
letters (2) alternatively (3) which tests all combinations between the
present words and selects the most similar.

is used to compare the only first N characters.

names a synonym file used for irregular spellings.

max allowed words in field, if more field is considered containing
garbage

names a wash file for the database field

gives full match if a given number of words are found in both strings,
i.e. all words doesn't have to match. You either specify a number or
one of the special codes:

* compare least number of words

% least number of words, least number of chars

I 'as %, but no reduction for missing initials.

Try samewords again, after removing specified chars.

reduction if samewords gives match on phonetic comparison.
default O.

reduction if street numbers differ. default 0.

name of the field that is affected by condflag.

specifies the flag to be set in normalize (norm) for the field specified in
condvar.

1 = high score although data is missing in the current field (overrides
value set in scoring). Default = 0.

Suppose that condvar is a "social security number" and condflag is set to 128. If "social security
number" is specified (not empty in the flow query), 128 will be OR:ed to the value set in norm for
this field. The meaning of the different norm-flags is described below under the section

Normailze.

184

scoring

<scoring minscore=(value) maxrows=(value) honor empty data=(value)
use existing score=(value) custom=(string)/>

Is used to calculate the score on records saved by the resultset. The records are sorted
automatically when the scoring-element is closed. Scoring use the flow function Normalize to
normalize terms and the default Boolware character file is used.

To calculate the score the element score is used were rules can be specified as attributes.

The following attributes can be used in the "scoring" element:

minscore the record must exceed this score to be approved. Default = 1

maxrows maximum numbers of record to save. Default = 1.000.000.

honor_empty_data 1 = high score although data is missing in one or more fields.
Default = 0.

use_existing_score 0 (default) is used to re-score all records and assume that 100 is the
highest possible value, 1 use the score applied on the record.

custom the name of an external module to be used instead of the built in

function in Boolware.

Note! You cannot use conditional statements (if) within scoring-elements, but you can use
macro expansion for the attributes. Another way is to make several sections within conditional
statements:

<if test="pnrFound > 0">
<scoring maxrows="S$maxRows" minscore="$lowCandidateScore" honor empty data="0">

<score var="pnrNo" weight="$pnrWeight" 1th="8" dbfield="$pnrFields"/>

<score var="personName" weight="$nameWeight" trywithout=" " sortwords="1"
samewords="1" norm="3" spacechars="-" irregnames="@irregnames.txt" noise="DE
LA VON VAN" dbfield="$nameFields"/>

<score var="personZip" weight="$zipWeight" dbfield="$zipFields"/>

<score var="personCity" weight="$cityWeight" norm="3" samewords="1" maxwords="4"
wash="@citywash.txt" dbfield="$cityFields"/>

<score var="personStreetl" weight="$streetWeight" norm="$streetNorm" trywithout=" "

sortwords="1" samewords="2" spacechars=" " wash="@streetwash.txt"
dbfield="$streetFields"/>
<score var="personCo" weight="$coWeight" norm="259" trywithout=" " sortwords="1"
samewords="2" spacechars=" " dbfield="$coFields"/>
</scoring>
<else/>
<scoring maxrows="S$maxRows" minscore="$lowCandidateScore" honor empty data="0">
<score var="personName" weight="$nameWeight" trywithout="-" sortwords="1"
samewords="!" norm="3" spacechars="-" irregnames="@irregnames.txt" noise="DE

LA VON VAN" dbfield="$nameFields"/>

<score var="personZip" weight="$zipWeight" dbfield="$zipFields"/>

<score var="personCity" weight="$cityWeight" norm="3" samewords="1" maxwords="4"
wash="@citywash.txt" dbfield="S$cityFields"/>

<score var="personStreetl" weight="$streetWeight" norm="$streetNorm" trywithout=" "

sortwords="1" samewords="2" spacechars=" " wash="@streetwash.txt"
dbfield="$streetFields"/>
<score var="personCo" weight="$coWeight" norm="259" trywithout=" " sortwords="1"
samewords="2" spacechars=" " dbfield="S$coFields"/>
</scoring>
</if>
search

<search cmd=(text) op=(QL op) opterm=(QL op) zeroback=1/0 zerobackterm=1/0
querylim=1/0 querylimvalue=(int) field=(field/*) text=(variable)
dbfield=(field) goal=(int) methods=(string) func=(string) autotrunc=1/0
near=(param) fuzzy=(param) sim=(param) nolinkwords=1/0
maxqueryexecutiontime= (int) resultbitmap=""/>

185

Perform a query. Either a QL-query (via the syntax "cmd=") or a query on supplied value (via
the syntax "field="). If "cmd" is used Boolware will ignore all other attributes in the search

element except "zeroback", "zerobackterm", "autotrunc”, "opterm”, "querylimvalue" and
"resultbitmap".

If the syntax field=, dbfield=, text=, op=, goal=, methods= is used you are limited to pure search
commands (FIND, AND, OR, NOT och XOR). If you on the other hand build up your search
command you can also use: save, delete, setsearch, back etc. to handle saved results/sets.

As the flow handles all queries within the same session, it is best to use the local Sysindex. The
local Sysindex will be used when saved Set and saved named Set. Saved Set requires that the
Setsearch is activated and it will be activates until deactivated. When Setsearch is activated all
queries will be saved as Sets and will be given a name by Boolware (S1, S2, ... Sn). It could be
difficult to keep track of the automatically generated hames when they should be used in a
guery and thus it is more convenient to use the saved named Set; see description in Manual
"Operations guide”, Chapter 11 "Interactive Query" section "Set Search". Sysindex (both the
global and the local) is saved on disk which means writing and reading has to be done. To avoid
these write/read as much as possible you could use the named Scratch to save results that
should be used later on. Named scratch results are "saved" in memory but have the same
functionality as saved named Sets.

Summary: use named Scratch results as the first option when a result should be saved. As
second option use saved named Set. You should avoid saved result.

cmd contains the actual query command, see " Operations guide", Chapter 11 "Interactive
Query".

Example:
Find one American president.
<search cmd="FIND president: John Baines Kennedy" />

NOTE!
The following attributes can be used together with cmd:
autotrunc, maxqueryexecutiontime, opterm, resultbitmap, zeroback and zerobackterm.

op contains a valid QL-commands (FIND, AND, OR, NOT, XOR). Default is "FIND".

opterm is the operator between terms in a "search". If for instance the search string is "Ingvar
Kamprad Elmtaryd Agunnaryd", the "opterm" is the implicit operator between the terms (words).
Can be AND, OR, NOT, XOR. Default value is: 'AND'.

zeroback only valid between operators AND and NOT and is used to avoid zero results. In
cases of zero result (the entire command) the query will automatically be revoked to the
previous result. Default value is "0" - no automatically revoke of zero result.

zerobackterm is similar to "zeroback" but is applied on each term in a search string (containing
several words); it not useful when the "opterm"=0OR.

Default is "0" - no automatic back. The search terms that causes zero result and "back” to the
previous intermediate result are saved in the global system variable termzerobackedarray. In
the global system variable termzerobacked you could see how many terms are saved. You have
to divide the number by two as each zero backed term generates two entries in the
termzerobackedarray (the current column name and the current term).

Example:

Find an american president; if a name is not found it should automatically be zero backed.

<search cmd="FIND presidents:John Baines Kennedy" zerobackterm="1"/>

186

No president has the specified name, but as zerobackterm was activated the name Baines
which causes a zero result will be backed. Thus the result is 1: John Fizerald Kennedy. You
could check if any name caused a zero result and if so which name(s) it was by checking the
global system variables termzerobacked and termzerobackedarray.

<if test="termzerobacked > 0">
<!-- Each backed term generates two elements in termzerobackedarray, -->
<!-- column name and search term. -—>
<set var="backedTerms" value="termzerobackedarray[1l]"/>
<for loop="i" from="3" to="length (termzerobackedarray)-1" step="2">
<set var="backedTerms"
value="backedTerms . ',' . termzerobackedarray[i]"/>
</for>
<print text="'Zero backed terms: ' . backedTerms"/>
</if>

querylim if set to 1 each result on a term should be compared with "querylimvalue”. If no
"querylimvalue" is given the global "querylimvalue" will be used (default 100). If number of hits
for the actual term exceeds the limit value it will be revoked from the search, (similar to stop
words). If "querylim" is set to 0 or is absent, no test will be done against any limit value. This
option is meaningful only if the search string contains more than one word and the opterm is
OR.

querylimvalue is a temporary value - for this search only - that will be used as a limit value if
"querylim" is set to 1.

field is the name of the field in the search (which search field to handle). The name of the field
should have a corresponding field in the table. The content of the specified field will be used in
the query. As an alternative an asterisk can be used to select all fields. In that case all fields will
be match against the table to find an "exact match", where all fields match the search criteria.
To use this syntax the fields in the flow query (input) agree with the fields in the table. Moreover,
you could not manipulate ("wash") the content of the input. A more flexible way is to use "text"
for the search words and "dbfield" to specify the corresponding field(s) in the table. an even
more flexible way is to use the cmd= syntax. In this case you build the search command exactly
as you want it.

text could contain a variable "massaged" via the built in string functions (or a constant).

dbfield contains the name(s) of in column(s) that should be searched in the current table. The
search arguments are probably saved in the "text" attribute. By specifying table.column the
search will be directed to another table within the same database; a relate query will be
generated. The result will then automatically be "transformed" to the main table.

Examples:
The database "Persons" contains two tables "tablel" and "table2".

<?xml version="1.0" encoding="iso-8859-1"7?>
<database name="Persons"/>
<table name="tablel"/>

<name>Higgins</name>

<search field="name"/>

A FIND will be performed in the column "name" in the table "table1" and the search argument is
Higgins.

<search field="table2.lastname" text="name"/>

In this case a search for Higgins will take place in the column "lasthame" in table "table2" The
result will be transformed into "tablel".

187

The attributes "goal" and "methods" is always used together. The combination of these are a
powerful way to express variants of different search methods ("methods") until a "goal” is
reached. Specified search methods in "methods" will be performed from left to right until the
goal is reached or all methods performed. Methods are written as comma separated values.
Valid "methods" are: string, word, syn, thes, stem, sound, fuzzy, case, near, stringasis,
withinstring, wordasis , nearwordasis, nearsound, nearcase and sim. If "methods" is omitted
word will be performed. If "goal" is omitted 1 will be used.

func could contain a call to a script function. See section "Functions and variables" below.

autotrunc could be set to 1 to perform an automatic truncation of all search terms. If no
truncation is desired autotrunc should be set to 0. If no value is set the current value will be
used, which could be unpredictable because you are not sure what has been done before.

near holds the parameters for the near method; near="N,QO". The parameters are N and O,
where N is the max allowed gap between the specified search terms. When O is 1 the search
terms must appear in the specified order; 0 means any order. See description in "Operations
Guide" Chapter 11 "Interactive Query".

Example:
<search text="'john smith'" goal="20" methods="near" near="1,1"/>

means that john smith must appear as a phrase to be approved in the near search.

fuzzy holds parameters for the fuzzy method; fyzzy="D,L". The parameters are D and L where D
is the maximum difference (in number of characters) to generate a hit. L is a limit for the
maximal difference in spelling. See description in "Operations Guide" Chapter 11 "Interactive

Query".

Example:
<search field="name" goal="20" methods="fuzzy" fuzzy="2,97"/>

means that all words that have a length that does not differ more than two from the specified
search term and the number of misspellings is less than three will generate a hit.

sim holds the parameters for the sim-method; sim="T,O". The parameters are T and O where T
is the threshold a value between 0.0 and 1.0 and the O is optimize and relevance factor, a value
between 0.0 — 1.0.

Example:
<search field="name" goal="20" methods="sim" sim="0.2,0.1"/>

nolinkwords tells that "linkwords" should not be used in the current search when the value is set
to 1. Defaultis 0 (use linkwords if active on field). "linkwords" are used by the word and sound
methods. See description in "Operations Guide" Chapter 11 "Interactive Query".

In maxqueryexecutiontime you could specify a maximum execution time in milliseconds for the
current command. When the specified time is reached the execution is terminated with an error
code. NOTE the specified time is only valid for the current command, else the maximum
execution time for a session set in the Boolware Manager will be used. If you used the
cmd=(string) to specify the search command the maxqueryexecutiontime could be specified as
an sub command. This sub command must immediately follow the specified command.

Example:

<search dbfield="name" text="'Jjohn smith'" maxqueryexecutiontime="20"/>
In this case the current search will be terminated if it takes more than 20 milliseconds.

<search cod="FIND name:jo* smith" maxqueryexecutiontime="50"/>
In this case the current search will be terminated if it takes more than 50 milliseconds.

maxqueryexecutiontime could also be specified as an sub command if cmd= is used:

188

<search cmd="FIND maxqueryexecutiontime (50) name:jo* smith"/>

resultbitmap can be set to the string "custom” if the operation AND or NOT should be performed
directly on the result in the "Custom List" when using the cmd.

Some more examples:

Example:
<search cmd="FIND name:higgins"/>

Performs a query to search for "higgins" in the field 'name' in the current table.

<search cmd="FIND name:S$name"/>

Performs a query to search for the contents in the search field 'name' in the field 'name’ in the
current table.

<search opterm="or" querylimvalue="50" cmd="OR type:querylim(sound($name))"/>
Performs a query and uses the sub command querylim to search in the field 'type' in the current

table using the contents in the search field 'name’. All terms that appears in more than 50
records will be ignored when searching. The operator between the different terms is OR.

<search opterm="or" querylim="1" querylimvalue="50" field="name"
dbfield="type" methods="sound"/>

Performs a query and uses the sub command querylim to search in the field 'type' in the current

table using the contents in the search field 'name’. All terms that appears in more than 50
records will be ignored when searching. The operator between the different terms is OR.

<search field="name"/>

Performs a search in the field 'name' in the current table and uses what is specified within the
element <name>. The command is "find" and the method is "word" as nothing is specified.

<search op="and" field="city"/>

Performs AND city:<city> where "city" is fetched from the flow query.

<search op="and" field="city" zeroback="1"/>

Performs the same as above but twill automatically back if the number of found records is zero.

<search cmd="back"/>

Performs a BACK command; makes the previous result the current.

<search field="name" goal="20" methods="near,word, sound"/>

189

Will first perform a FIND name:near(<name>) (proximity) and then compares the result to "goal".
If the result is less than "goal” it will continue with FIND name:<name> (normal word search
operator AND between the terms). If the result still is less than "goal” it will continue with FIND
name:sound(<name>) (phonetic search). The point is to gradually widen the result. The exact
same could be expressed as follows:

<search field="name" methods="near"/>
<if test="hitcount < 20">
<search field="name" methods="word"/>
<if test="hitcount < 20">
<search field="name" methods="sound"/>
</if>
</if>

Perform a relate query by searching in table Bromma and then convert the result to the target
table Company (specified in the element <table name=>):

<?xml version="1.0" encoding="iso-8859-1"?>

<database name="companies"/>
<table name="Company"/>

<flow>
<!-- Must find at least 1, using company name -->
<search field="Bromma.Companyname" goal="20" methods="word, sound"/>
<if test="hitcount == 0">
<log type="error" msg="not found"/>
<exit type="error"/>
</if>
</flow>

Uses the content in the query element "a" to search for "telno" in the database column. If
"dbfield" is not specified Boolware assumes that the name of the column in the database is the
same as in the query ("a" in this example).

<search field="a" dbfield="telno"/>

Perform a search in a table - that is part of the database - and is not specified in the XML
request. Pick up the result from a column in that table and use the extracted words to perform a
search in the table specified in the XML request. The database Persons contains two tables:
Person_data and Address_data.

<?xml version="1.0" encoding="iso-8859-1"7?>

<database name="Persons"/>
<table name="Address data"/>

<flow>
<!-- Searches for 'name' in table Person data -->
<if test="len(name) != 0">

<!-- Searches for ‘name’ in table Person data -->

<search cmd="TABLES (Person data) FIND last name:S$name" autotrunc="0"/>

<!-- If the result is between 10-50 pick up zipcode in the found records -->
<if test=" (currhitcount > 10) AND (currhitcount < 50)">
<!-- Pick up zipcodes from the found records -->

<set var="i" value="1"/>

<while test="i <= currhitcount">
<fetch row="i" table="Person data" cols="zipcode"/>
<set var="zip" value="row['ZipCode']"/>
<!-- Build an orString of extracted zipcodes —-->

<set var="orString" value="orString . ' ' . zip"/>

190

<set var="i" value="i+1"/>
</while>

<!-- Search for found zipcodes in table Address data -->
<search cmd="FIND zipcode:orsearch (SorString)"/>

<!-- Check if any result and do something -->

<if test="hitcount > 0">
<-- Pick up corresponding Cities from Address data -->
<set var="i" value="1"/>
<set var="cities" value="''"/>

<while test="i <= hitcount">
<fetch row="i" cols="City"/>

<set var="cities" wvalue="cities . ', ' . row['City']l"/>
<set var="i" value="i+1"/>
</while>
<-- All found cities in variable 'cities' -->
</if>
</if>
</if>
</flow>

set

<set var=(name) value=(expr) string=(string)/>

Declare a variable and set a value. If the variable does not exist it will be created.

The attribute var must exist and gives the name of the current variable.

If something is specified in the attribute string it will be moved to the variable specified in var
exactly as is. No variables could be specified in string. If string is specified any value specified in
the attribute value will be ignored.

Variables are normally global and could be used outside the procedure.

Local variables must start with a* ’ in the name and disappear when the procedure exit.

Variable name could not start with a dollar sign '$' as it is reserved for the macro.

<!-- Create variable -->
<set var="counter" string="75"/>

<!-- Increment variable -->
<set var="counter" value="counter+1"/>

NOTE! The set syntax can not be used to assign a new value to an array element.
To assign a new value to an array element, use the call script syntax.

Example:

<call script="myArray[2] = 'newString'/>

while

<while test=(name) </<=/==/>/>=/!= (expr) [id="name"]>

Tests on a value and performs the loop if the value is true. A while-loop is very much alike a for-
loop but is more general when it comes to comparison (see for).

191

By using the attribute id you could give the while-loop a name, which could be used by the
commands <break/>, <next/> and <continue/>.

If you want to leave a loop before the specified condition is met you could use the command
<break/>. This command could also be used to leave a named (outer) loop when you are using
nested loops.

Another useful command is <next/> or <continue/>. This command is used when you want to
continue with the next iteration without go to the end of the loop.

<!-- Checks passed parameters, exits if any is empty -->
<set var="i" value="1"/>
<while test="i" op="1le" value="paramcount">

<if test="length (Pi) == 0">
<exit type="empty"/>
</if>
<set var="i" value="i+1"/>
</while>

An example of how to use the <break/> command.

<!-- Checks passed parameters, exits if any is empty -->
<proc name="LoopBreak">
<call script="words = array('one', 'two', 'three', 'four')"/>
<!-- Two for-loops and one while-loop demonstrates the break command-->
<for loop="i" from="0" to="length (words) - 1" id="outer">
<for loop="j" from="length (words) - 1" to="0" step="-1" id="inner">

<set var="k" value="0"/>
<while test="k < 10">
<set var="k" value="k+1"/>

<if test="j == 2">
<break/>
</if>
<if test="j == 1">
<break id="inner"/>
</if>
<if test="j == 0">
<break id="outer"/>
</if>
</while>
</for>
</for>
</proc>

An example of how to use the <next/> and <continue/> commands.

<!-- Two for-loops and one while-loop demonstrates the next command-->
<proc name="LoopNext'">
<call script="words = array('one', 'two', 'three', 'four')" />
<for loop="1i" from="0" to="length(words) - 1" id="outer">
<for loop="j" from="length(words) - 1" to="0" step="-1" id="inner">

<set var="k" value="0"/>
<while test="k < 10">
<set var="k" value="k+1"/>
<if test="j == 2">
<next/>
</if>
<if test="j == 1">
<next id="inner"/>
</if>
<if test="j == 0">
<continue id="outer"/>
</if>

192

</while>
</for>
</for>

Functions - overview

A great number of functions are available which makes it possible to take advantage of all
indexing logic that is part of the Boolware system. There are for example functions for
normalizing of spelling (phonetic coding) and access to synonyms and thesaurus.

Calculation
addition, subtraction, multiplication, division, shl, shr, modulus, and, or, not, xor

Mathematic functions
abs, cos, date, deg, pi, rad, sin, sqrt, tan, time

String functions

array, chew, compare, compress, delete, dropchar, dropterm, env, false, iif, insert, instr, lower
(Icase), length (len), lookup, match, mid (substr), normalize, numeric, numrange, only, replace,
reverse, sort, space, split, stem, string, syn, thes, tostring, trim, true, upper (ucase), ver, wash

Logical operators
and(&&), or(|)).

Functions - reference

Below is an alphabetic list of all available functions.

Abs

number = abs (number)
Returns the absolute value of a number.

Example:

Abs(-2.3) => 2.3
Abs (-157) => 157

Array
array(iteml [, item2..itemN])

Creates and initializes an array with the specified elements.

Example:

names = array('Donald', 'Duck')
names [0] Donald

names [1] Duck

193

Chew

resultstring = Chew(inputstring, regex-strings, lookup-words, lookup-index, flags,
wordSep)

Identifies and extracts one or more sub-strings in a text, ‘inputstring’, and stores the extracted
result in 'resultstring'. If 'lookup-words' is specified and used, the extracted sub-strings from
'inputstring' are replaced with the found base synonym and stored in the 'resultstring'.

The parameter 'inputstring’ contains the string that should be examined.

The parameter 'regex-strings' contains one or more regex strings to search for, separated by
new line (Lf or CrLf). If starting with a'@" it will be regarded as a file name which contains regex
expressions. If the sub-string is found in any of the given regex expressions it will be removed
from 'inputstring' and stored in the 'resultstring' and the global variable "chewpos" will contain its
start position in 'inputstring'. The "chewpos" is 1-based and is 0 if hothing is removed from the
'inputstring'.

The parameter 'lookup-words' contains a list of "quick-search" terms; for example the 200
biggest cities in US to identify a City. This parameter can contain either a file name - started with
a'@' or the argument #left. The argument #left means that you, in the field specified in the
'lookup-index’, should also search for the word to the left of the sub-string found in ’regex-
strings’ e.g. North bondstreet.

The parameter 'lookup-index' could contain a field name. If the string could not be identified by
'regex-strings' nor by 'lookup-words' Boolware will use the index for the specified field to see if
any term in 'inputstring' is part of that field (for instance address). If the argument #left has been
specified in 'lookup-words' and a term has been found in 'regex-strings' a search on the word to
the left of the found sub-string will take place in the corresponding Boolware index.

In the parameter 'flags' you could specify the following values: sound=n, alphanumericsplit,
replacemode, multilookup, nocleanup, rightlookup, indexbeforelookupfile, onlystring and
multichew.

If sound is specified the specified n (see Normalize) tells which phonetic algorithm to be used
when searching in the Boolware index.

If alphanumericsplit is specified the words will be split between alpha characters and digits.

If replacemode is specified it means that the found word will be replaced using the regex
expression 'regex-strings'.

If multilookup is specified search in 'lookup-words' will continue until all occurrences has been
found; the found base synonyms will be separated by comma (,) and are stored in the
'resultstring'.

If nocleanup is specified it means that the input string — 'inputstring' - will not be cleaned up from
interpunctuations and digits before searching in the Boolware index specified in the parameter
'lookup-index’.

If nocleanup is not specified, punctuations and digits will be replaced with space character and
consecutive spaces will be reduced to one space character.

If rightlookup is specified the search in the input string — 'inputstring' - starts from the right (from
the end).

If indexbeforelookupfile is specified it means that search in the given field name - 'lookup-index'
- will take place in the index before looking in the file specified in 'lookup-words'.

If onlystring is specified, the search will occur only in string index.

194

If multichew is specified it means that if there are more than one sub-string matched in given
‘regex-strings’, 'lookup-words' or 'lookup-index'. All extracted sub-strings from ‘inputstring’ will be
stored in 'resultstring’ if the match was in the ‘regex-strings' or 'lookup-index'. If the match was
found in the 'lookup-words' all base synonyms is stored in the 'resultstring’. The "chewpos"
variable is now an array with positions.

The wordSep parameter specifies word break characters to be used. It could also refer to a
Boolware character file. If a file name is used it should be preceded by (@) e.qg.
(@db.tab.col.chr). If nothing is specified in this parameter the default Boolware character file will
be used.

Example:

<!-- Check (Swedish) car license number (3 letters followed by 3 digits) -->
<set var="input" string="ayd040 is my car"/>

<call script="regno = chew (input, '\\bl[a-zA-Z]{3} ?2[0-9]{3}\\b")"/>

regno now contains: ayd040

input now contains: is my car

<!-- Check for city name -->
<set var="input" string="All in NY"/>
<call script="postal = chew(input, '', '@cities.txt', 'Postal Name')"/>

The file cities.txt:
New York (NY)

Los Angeles (LA)

..etc

postal now contains: New York
input now contains: All in

<!-- Check for cars -->
<set var="input" string="My car is a s1500"/>
<call script="car = chew (input, '', '@cars.txt', '', 'split'"/>)

The file cars.txt:
Mercedes (s1500, clk 320, sl1, 500)
Volvo(glt404, pv 444, pv, 444)

car now contains: Mercedes
input now contains: My car is a

Compare

Score = Compare(stringl, string2, options, stopWords, percent)

Compares two strings - stringl and string2 - and returns a score depending on the "similarity"
between the two strings. 100 means identical after regarding the other parameters (‘options' and
'stopWords").

The parameter 'options' tells how to make the comparison; should case be ignored, should the
order of the words be ignored, should phonetic coding be used, see Normalize.

The words separated by a blank that are specified in the parameter 'stopWords' will not take
part in the comparison. The 'stopWords' will also be affected by the parameter 'options'.

See function Normalize to get a better understanding of these parameters (‘options' and
'stopWords') they have exactly the same meaning for both functions.

The result ('Score") is normally based on the number of "errors" detected by an algorithm by
Damerau-Levenshtein. It is 100 when the two strings are identical (0 errors taking in account the

195

parameters ‘options' and 'stopWords'). 100 is reduced by one by each detected "error". If the
parameter 'percent’ is set to 1, the result will be specified in percent.

Example:
Compare ('Christoffer Kvist', 'Kristoffer Quist', 2) => 100

Before the comparison the two strings should be transformed by the Swedish phonetic algorithm
which makes them identical.

Example:
Compare ('Christoffer Kvist', 'Kristoffer Quist') => 96

If the two strings are compared as they look - without any phonetic algorithm - the result will be
different. Four errors are found: 'Ck'/'K' and 'Kv'/'Qu'" and the result will be 100 - 4 = 96.

Example:
Compare ('Christoffer kale Kvist', 'Kristoffer Quist', 2, 'kalle') => 100

Before the comparison the two strings should be transformed by the Swedish phonetic algorithm
which makes them identical.

The word 'kale' will be ignored when comparing as it is the same that has been specified in
'stopWords'. The 'stopWords' 'kalle' will be transformed by the Swedish phonetic algorithm to
'kale'.

Example:
Compare ('Christoffer Kvist', 'Kristoffer Quist', 0, '', 1) => 76

If the two strings are compared as they look - without any phonetic algorithm - and specifies
that the result should be given in percent the result will be: 76. The longest string contains 17
characters. Four errors are found: 'Ck'/'K' and 'Kv'/'Qu’ which means that 13 characters are the
same (13/17*100 = 76%).

Compress

text = compress (text)

Single characters separated by: space, dot (.), slash (/) plus (+) or ampersand (&) will be pulled
together into one word.

Note: If any of these punctuation marks are set as Letter or Digit in the character table "Word
forming" at the table, database or system level, then the character is not removed.

Example:
I BM
I.B.M

will both give the word IBM.

Cos

number = cos (degrees)

196

Calculates cosine for an angle. The angle should be specified in degrees.
Example:

cos (deg(pi)) => -1

Date
string = date()
Returns the current date in the format CCYY-MM-DD.

Example:

date () => 2015-07-15

Deg
degrees = deg(radians)
Converts radians to degrees.

Example:

deg(l) => 57.295780

Delete

string = Delete(string, pos, length)

Removes a specified number of characters from a given position in a string.
The position (pos) is specified as an offset starting from 0 (zero).

If 'length’ is omitted then everything from the 'pos’ will be erased.

If string is an array 'pos' is the start element (starts from 0) and 'length’ is the number of
elements to delete.

Example:

String:
Delete ('The quick brown fox ', 10, 6) => 'The quick fox'

Array:
names = array('John', 'Fizgerald', 'Kennedy')
Delete (names, 1, 1) => names [0] John, names [1] Kennedy

Dropchar

Dropchar (string [, direction[, count]])

197

Erases one or more characters from a specified string from the left or the right.

‘direction’ tells from which direction characters should be removed; valid values are right and
left. If no ‘direction’ is specified right is assumed.

The parameter 'count’ is optional and the default value is one (1).

Example:
Assume the variable "str" contains: "The quick brown fox".

Remove two characters from the right (from the end):
Dropchar(str, right, 2) => 'The quick brown f'

One character will be removed if no ‘count’ specified:
Dropchar(str, left) => 'he quick brown fox'

If no parameter but 'str' is specified, the last character will be removed
Dropchar(str) => "The quick brown fo'

Dropterm

Dropterm(string [, direction[, count [, fieldname]]])
Normalize and erases one or more words from a specified string from the ‘left' or 'right'.

'direction’ tells from which direction characters should be removed; valid values are right and
left. If no ‘direction’ is specified right is assumed.

The parameter 'count' is optional and the default value is one (1).
The parameter ‘fieldname' can contain a field name from the current specified table and in that

case the character set specified for that field will be used. If field name omitted the system
default character set will be used.

Example 1.
The variable str contains the following words: "Steel Company Boston Mass".

Remove two words from the right (from the end)
Dropterm(str, right, 2) => 'STEEL COMPANY'

One word will be removed if no 'count’ specified:
Dropterm(str, left) => 'COMPANY BOSTON MASS'

If no parameter but 'str' is specified, the last word will be removed
Dropterm(str) => 'STEEL COMPANY BOSTON'

Example 2:
The variable str contains the following words: "Fish & chips,Coffee and Chocolate Cake".
Dropterm(str, right, 2) => 'FISH CHIPS COFFEE AND'

i.e. all break characters are replaced with space character and words are normalized.

198

Env

string = Env(string)

Reads the specified environment variable.

Example:

env('temp') => 'c:\windows\temp'

env ('username') => 'Bill'
False

The value of Boolean "false" (0).

lif

Iif (expr, truepart, falsepart)

Immediate if returns one of its two parameters based on the evaluation of an expression.
expr is the expression that is to be evaluated.
truepart defines what the lif function returns if the evaluation of expr is true.

falsepart defines what the lif function returns if the evaluation of expr is false.

There are also operators to accomplish the same purpose, generally referred to as ternary
operators; ?:, as used in C, C++ and related languages.

expr ? truepart : falsepart

Insert

string = Insert(substring, string, pos)

Inserts a string into another, at a specific position. The position is given as an offset, starting
from zero. The pos value must be a positive value or zero.

Example:

Insert ('quick ', 'The brown fox.', 4) => 'The quick brown fox.'

The Insert function can also be used with arrays to insert a new string at a given position.
array = Insert(string, array, pos)

The new string will be inserted at the given position pos and the size of the array will increase
by one. If the index position pos, refer to a element that does not exist, new empty strings will
automatically be inserted into the array up to the newly inserted string and the size of the array

will grow accordingly to the numbers of element inserted.

Example:

names = array

(

199

[0] => Mike
[1] => Joe
[2] => Eve
[3] => Marie

)

Insert 'Tom' after Joe at index position 2:

names = Insert('Tom', names, 2)
names = array

(

[0] => Mike

[1] => Joe

[2] => Tom

[3] => Eve

[4] => Marie

Append a sixth string 'Liz' to the array at index position 5:

names = Insert('Liz', names, 5)
names = array

(

[0] => Mike

[1] => Joe

[2] => Tom

[3] => Eve

[4] => Marie

[5] => Liz

)

If you want to replace a string element in the array, you use the following syntax:

<!-- Replace 'Joe' with 'John' -
<call script="names[1l] = 'John'"/>
names = array
(
[0] => Mike
[1] => John
[2] => Tom
[3] => Eve
[4] => Marie
[5] => Liz
)
InStr

i = InStr(string, substring)

Finds the first occurrence of a substring within a string, and returns its start position.
If the substring is not found zero (0) will be returned.

The function can return the following values:

o If stringis "™ - InStr returns 0

» If substring is " - InStr returns O
» If substring cannot be found - InStr returns 0

200

« If substring is found within string - InStr returns the offset (start from 1)

LCase, Lower

string = LCase (string)

Converts a string to lower case. The computer's "locale" affects how the translation will be done.

Example:
<set var="str" value="lcase('ABCDE')"/>, will set variable str to "abcde".
Len, Length

i = Len(string)

Returns the length of a string (humber of characters) or an array (number of elements).
Example:

<set var="i" value="length (str)"/>

will assign the variable "i" the length of the text in the variable str. If str contains "Ericsson AB",
11 will be returned.

Lookup

string = Lookup(string, file [, sep])

Returns base term for a given term, or an empty string if not found.

Strings are stored in a file in the database directory and named in this call with a preceding @.
The file is in standard Boolware synonym file format, and the Lookup is not case sensitive.

If the parameter 'sep’ is specified all "base synonyms" will be returned separated by the
specified string.

For example, assume the following content in a file called 'cmd.txt":

HELP(HILFE, ASSIST, ?)

<set var="str" value="lookup(hilfe', '@cmd.txt' "/>

Any of the terms 'hilfe’, 'assist’, '?" will return 'HELP' as a result. Of course you can have more

than one synonym in the file, but Lookup will always return each "base synonym" (the first term)
for a found term.

Match

index = Match(string, pattern, flags)

201

Searches for a substring within a text using RegEx. Match is similar to, but more powerful than
InStr as wildcards can be used.

Match() returns an array of pairwise integers, where each pair marks the starting and ending
offset where a match has been found in the text. If no match can be found Match() returns an
empty array. Use Length() to test the size of the returned array.

The simplest form of regular expression is to search for a fixed text.

text = 'My name is Jesse James'
<if test="length (match (text, 'Jesse')) > 0">
</if>

The condition is true if "Jesse" can be found somewhere in the string text. By default regular
expressions are case sensitive, so for example "My hame is jesse james" would not meet the
condition in the example. You can use case insensitive matching by calling with flags = 1.
Refer to separate chapter about RegEXx - regular expressions.

Example:

arry = Match('the red king', ' ((red|white) (king|queen))') =>

arry = Array

[0] => 4

[1] => 12

)
Maxvalue

val = Maxvalue(a, b [,'flags])

Returns the greatest value of a and b.
The parameter flags could contain the string 'floattoint' to eliminate decimals from val

Example:
<call script="val = maxvalue (10, 12, 'floattoint')" />
The variable val will contain 12

Mid, Substr

s = Mid(string, start [, length])

Extracts a number of characters from a string.

Parameters

string Text to extract characters from.

start Start offset, zero-based. If start is negative or >= the number of characters in the
string an empty string will be returned ().

Length Number of characters to copy. If left out or if there remain fewer characters in the

text, all characters from start to the text end will be returned.

Example:
<set var="str" value="'Oak road 28'"/>

202

<call script="str2 = mid(str, 4, 4)"/>
str2 contains "road"

<call script="str2 = mid(str, 4)"/>
str2 contains "road 28"

Minvalue

val = Minvalue(a, b [, 'flags])

Returns the smallest value of a and b.
The parameter flags could contain the string 'floattoint' to eliminate decimals from val

Example:
<call script="val = minvalue (10, 12, 'floattoint')" />
The variable val will contain 10

Mod

remainder = number Mod (divisor)
Returns the rest from a division.
Parameters

Divisor A chosen divisor

The function returns the remainder from a division (number/divisor). If the remainder is 0 (zero)
the divisor is a factor of number.

Example:
You need to determine if a number is even or odd. The number is set to 101 and the divisor is

set to 2.

remainder = number mod (divisor) and the remainder is 1, which indicates that
the number 101 is odd.

Normalize

string = Normalize (string, method, stopWords, maxleng, synfile, flags,
wordSep)

Returns a normalized string.

The parameter string contains the string to be normalized.
The parameter method is an integer that controls how normalization is done, and means the
following (in increasing "fuzziness" order):

0 - Case insensitive, diacritical insensitive (accents).
1 - Same as 0 (NOTE could be used in the future)

2 - Swedish phonetics

3 - Western European phonetics

4 - English phonetics

5 - Soundex modified

203

6 - Soundex standard
7 - Custom phonetic, e03 exit

128 - remove digits and punctuation characters

256 - street address, use both street name and street number but discard the rest
512 - street address, just use the street name; skip street number

1024 - compress, compress multiple consecutive letters

2048 - stem, skip endings by using the stemming algorithm

4096 - split between letters and digits; SL500 will be two words SL and 500

The lowest 7 bits (0 - 6 above) should be interpreted as an integer which specifies the fuzziness
when comparing. The remaining bits (8 - 32) should be regarded as flags which will be OR:ed to
the other values.

Example:

1155 means:

Western European phonetics (3)

Remove digits and punctuation characters (128)

Compress multiple consecutive letters (1024)

If stopWords are given, these are removed from the string.

The parameter maxleng tells the maximum number of characters the result should have.

In the synfile parameter you could specify synonyms which will replace found words in the input
string.

If the parameter flags contains the value noalphanumericsplit words will not be split between
letters and digits (the only value that could be specified in flags).

The wordSep parameter specified the break characters to be used. It could also refer to a
Boolware character file. If a file name is used it should be preceded by an at-sign e.g.
(@db.tab.col.chr). If nothing specified in this parameter the default Boolware character file will
be used.

Example:

Normalize ('priscilla presley', 4, '') => 'PRISILA PRESLEY'

Numeric

bool = Numeric(string)

Controls that only digits occur in a string. The string can contain one or more leading spaces
followed by a plus or minus sign, followed by digits, decimal point and spaces.

Example:

Numeric ('The Daily Planet') => 0 (false)

Numeric('3.14"'") => 1 (true)
Numrange

numrange (field, increase)

204

Expands a numeric interval, for example a street number. The value in Increase is used to
compute new lower and upper bounds in the interval.

Example:

Assume a search for Street:north road 28.

<call script="str = 'Street:north road 28' "/>
<call script="numrange (str, 5) "/>

Numrange(str, 5) => modifies 'str' to: "Street:north road (humrange(23..33))".

The value of "increase" can be given as procent instead.
Numrange(str, 10%) => modifies 'str' till: "Street:north road (numrange((25..30))".

Only

bool = Only(string, charString)

Controls that a string contains only a specific set of characters, for example to test if a string
seems to contain a phone number.

Example:

Only(telno, ' +-()0123456789') => 1

Pi

Pi

The value of Pi, approximately 3.14159265.
Rad

radians = rad(degrees)

Converts degrees to radians.

Example:

rad(180) => 3.14159265
Replace

string = Replace(string, old, new)
Searches through a text, replacing one sequence with another.

Example:

replace ('august strindberg', 's', 'sch') => auguscht schtrindberg

205

Reverse

string = Reverse (string)

Reverses the letters in a text.

Example:

<set var="str" value="Reverse ('Impossible error!')" />
Result:

!rorre elbissopmI

Sin
number = sin (degrees)
Computes the sine value of an angle. The angle is given in degrees.
Example:

sin(deg(pi)) => 0

Sort

Array = Sort(array)

Sorts the words in an array ascending.

arry = Sort(Split('Mercedes-Benz SL500', ' -"'))

arry = array (

0 => 500

1 => Benz

2 => Mercedes
3 => SL

)

Space
string = Space (length)
Returns a text consisting of a number of spaces.

Example:

str = Space(8) => "' !

206

Split
Array = Split(string, splitChars, flags)
Split string into array.
The first parameter - string - is the text to be parsed.

The second parameter is used to tell which word breaking characters that should be used,
either by given characters or by given filename of the Boolware character table that should be
used (e.g. @db.tablename.chr). If not given at all, the Boolware system character table will be
used (default.chr).

An array is a numbered list of values. For example the text "Mercedes-Benz SL500" can be split
into a word array, put into the variable array:

If the parameter flags contains the string 'noalphanumericsplit' words will not be split between
letters and digits.

If the parameter flags contains the string 'skiphyphen’, the hyphen will be removed if even if it
followed by a digit and is given as a break character.

Both 'noalphanumericsplit' and 'skiphyphen' can be given separated by comma.

arry = Split ('Mercedes-Benz SL500', ' -'")
The result is an array containing four elements:

arry = array (
0 => Mercedes

1 => Benz
2 => SL
3 => 500
)

Sqgrt

number = sqgrt(number)
Computes the square root from a value. The same as 1 (1/ 2).

sqrt (625) => 25
625 ~ (1 / 2) => 25

Stem

string = stem(language, string)
Returns a stemmed string.

Stem('en', 'TALKED') => 'TALK'

207

String
string = string(character, length)
Returns a text consisting of a number of repeated characters.

Example:

<set var="s" value="string('=', 18)" /> => "========

Syn
string = syn(string [, synfile])
Returns synonyms for a given word. Boolware's global synonyms are used.

A file, synfile, containing synonyms could be specified; if no file is specified the global synonym
file will be used. The file name must be preceded by an at-sign e.g. (@synonyms.txt).

Example:

Syn('job') => 'work,employment'

Tan
number = tan (degrees)
Computes the tangent for an angle. The angle is given in degrees.

Example:

tan(45) => 1

Thes

string = thes(string [, synonyms, children, thesfile])

Returns a thesaurus-string. Boolware's global thesaurus is used. If synonyms are desired set
Synonyms to 1. Set Children to the desired number of sublevels.

A file, thesfile, containing a thesaurus could be specified; if no file is specified the global
thesaurus file will be used. The file name must be preceded by an at-sign e.g. (@thesaurus.txt).

Example:
Thes ('VEHICLE', 1, 2) =>
VEHICLE

, CAR, SAAB, AUDI, VOLVO

, BOAT, SHIP, VESSLE, MAXI, SVAN
, PLANE, PROPELLERPLANE, REAPLANE, AEROPLANE

208

Time
number = time ()
Returns the current time on the format HH-MM-SS.MSEC

Example:

time () => 17:52:48.123

ToString

string = ToString(variable [, separator-string [, flags]])

Converts a variable to a string. If an array is passed, all elements of it will be concatenated
using the supplied value as a separator.

The parameter flags can be set to the string 'floattoint'. If flags is set and the variable type is
float type it will be converted to integer before it is converted to string. If variable is an array all
elements within the array that is of float type will be converted to integer before conversion to
string.

Example:

Array = Split('Mercedes-Benz SL500', ' -')
str = ToString (Array, ' ')

The result 'str' is: Mercedes Benz SL 500

Trim
string = trim(string [, trimchars])
Removes leading and trailing spaces from a string.

The parameter 'trimchars' is a string of characters that should be removed from the start and
end of the specified string. If ‘trimchars' is omitted the only character that will be removed is
blank.

Characters in 'trimchars' can be specified as XML-encoded characters e.g. space character can
be specified as (decimal) or (hexadecimal)

Example:
string = trim(' Stockholm ')

If the search field City contains " Stockholm " (with one leading and two trailing spaces), it will
return "Stockholm®.

string = trim(' Home.Made.', ' .")

In this example you have specified that both blanks and periods (.) should be removed. The
result will be: "Home.Made".

209

True

The value of boolean "true” (1).

UCase, Upper

string = UCase (string)

Converts a text to capitals only. (upper case). The computer's "locale" determines how the
conversion is done.

Example: Assume that the City column contains "London";
<set var="str" value="ucase(row['city']l)" />, will set variable str to
"LONDON" .

Ver

Returns the version.

Ver () =>
Boolware flow 2.8.0.60, Copyright (C) 2001-2022 Softbool AB, all rights
reserved

Wash

string = Wash(string, replaceStrings, triggerWords, wordsep, flags)

"Washes" a string by applying repeated search and replace expressions (regular expression).

For example "if numeric followed by "flI* is found last in the string, replace it with an empty
string".

The 'replaceStrings' parameter may contain a file name if it's prefixed with @. In that case the

search and replace list is read from this file.

The 'triggerWords' parameter may contain a file name - which should be prefixed with @ -. This

file contains special terms to look for, for example "mobile" or "home", which, if found, are
removed and returned in the global variable "trigterm".

In the parameter 'wordsep' you could specify your own break characters that are used to
separate words in the input string.

If the parameter flags contains the string 'noalphanumericsplit' words will not be split between

letters and digits.

If the parameter flags contains the string ‘casesensitive’, a case sensitive search will be
performed.

Example:

<!-- Wash input criteria -->
<call script="str = wash('+46 [8] 77 (8.8) [9,9]"', '"[\\I\\[+ ., ()]1+~")

210

The above returns the following in str: 468778899

Another example:
<!-- Wash input criteria -->
<call script="str = wash (input, '@telnowash.txt', '@trigwords.txt')" />

The telnowash.txt file:
; List of search and replace strings
; Search ~ Replace <CrLf>

M+[0-91{2}~
~Sok~

~“Mob~

~"Tele~

tel~

till~

[- 1~

The trigwords.txt file:
mob (mobile,mobileno, mobiletel, mobilenumber)

home (homeno, hometel, tel, telno)
work (work, workno, company)

Regex support

A regular expression (or regex, or pattern) is a text string that describes some set of strings.

Using RegEX, you can:
. see if a string matches a specified pattern as a whole, and
. search within a string for a substring matching a specified pattern.

Some regular expressions match only one string, i.e., the set they describe has only one
member. For example, the regular expression 'foo' matches the string foo' and no others. Other
regular expressions match more than one string, i.e., the set they describe has more than one
member. For example, the regular expression 'f*' matches the set of strings made up of any
number (including zero) of 'f's.

As you can see, some characters in regular expressions match themselves (such as 'f') and
some don't (such as "*'); the ones that don't match themselves instead let you specify patterns
that describe many different strings.

Boolware use ICU regular expression implementing "POSIX. 1".

array Match(text, regex [, flags%])

Match() will return an array of pair wise integers, where each pair represents a position where a
match has been found in the text. Each position is represented as a start offset and an end
offset. If no match is found, Match() returns an empty array. You can use the Length() function
to test the size of the returned array.

The simplest use for regular expressions is to check if a string matches a given pattern.

text = 'My name is Jesse James'
<if test="length (match (text, 'Jesse')) > 0">
<[if>

The condition is true if text includes the string Jesse. By default, regular expressions are case
sensitive, so "My name is jesse james" wouldn't match the above condition. You can set flags =
1 to ignore case.

211

Let's now see something more sophisticated.

Special characters

Here are some (but not all) useful special characters you can use in regular expressions:

. Any single character
* Zero or more of the last character

+ One or more of the last character
? Zero or one of the last character

Characters * + and ? are called quantifiers, because they are used to tell how many of
something should be matched. - You can use parentheses to group things. Here are some
examples:

be.r matches e.g. bear or beer

bee? matches both be and bee

(bee)? matches both bee and an empty string
gr+ matches gr, grr, grrr, grrrr etc.

argh* matches arg, argh, arghh, arghhh etc.

(argh)+ matches argh, arghargh, argharghargh etc.

For example, you could use

text = "The dog said grrrr"
if match(text, "gr+") then RunAwayFast ()

Square brackets (character classes)

Square brackets are used to match any one of the characters inside them.

[abc] matches a single a, b, or c.
[abc]+ matches any combination of a, b and c.

A hyphen indicates "between" in ASCII order.

[a-c] matches a single a, b, or c.

[c-a] is a syntax error, because ¢ comes after a in ASCII.

[a-zA-Z] matches any lower- or upper-case character (but not including ASCII 128 - 255)

A caret at the beginning means "not":

[~z] matches any character except z
[anz] matches a, z, or *, because ” doesn't start the expression inside the brackets

If you want to include the], [, » or - inside [], use the escape character: \], \[, * or \-.

Keep in mind that if an regex expression require an escape sequence you must add an extra
escape sign because the flow itself also uses escape sequences e.g. the ‘$-'sign.

Example: In a flow you would like to trim square brackets:

<call script="str=wash('+46 [8] 77 (8.8) [9,9]', '[+ .,O\\[]+~"')"/>

Some more special expressions

212

There are a couple of special escape sequences. Here are the most usual ones (see the syntax
rules for more):

\w Any alphanumeric (word) character. By default, the same as [a-zA-Z0-9_€y], that is,
underscore, all numbers and letters including ASCII 128 - 255. See the syntax rules
for details.

\d Any digit. The same as [0-9].

\s Any whitespace character: space, tab, or newline.

\b The metacharacter \b is an anchor like the caret and the dollar sign. It matches at a
position that is called a "word boundary”. Simply put: \b allows you to perform a "whole
words only" search using a regular expression in the form of \bword\b. A "word character'
is a character that can be used to form words. All characters that are not "word
characters" are "non-word characters".

Examples:

\w+ Any word

\d+ Any positive integer

x\s+y "X y", with one or more whitespace between x and y

Practical introduction

In its simplest form, a regular expression is a string of symbols to match "as is".

Regex Matches
abc abcabcabc
234 12345

That's not very impressive yet. But you can see that regex match the first case found, once,
anywhere in the input string.

Supported expressions

RegEXx supports a wide range of regular expression types. Here is a short list.

X* Zero or more X's

X+ One or more X's

x? One or zero xX's

x{m,n} At least m and at most n x's

[A-Z] Any uppercase character A-Z

. Any single character except a newline
\w Any alphanumeric character

\d Any digit (the same as [0-9])
Quantifiers

So what if you want to match several characters? You need to use a quantifier. The most
important quantifiers are *?+. They may look familiar to you from, say, the dir statement of DOS,
but they're not exactly the same.

* matches any number of what's before it, from zero to infinity.

? matches zero or one.
+ matches one or more.

213

Regex Matches

23*4 1245, 12345, 123345
23?4 1245, 12345
23+4 12345, 123345

By default, regex are greedy. They take as many characters as possible. In the next example,
you can see that the regex matches as many 2's as there are.

Regex Matches
2% 122223

Special characters

A lot of special characters are available for regex building. Here are some of the more usual
ones.

The dot matches any single character.

\n Matches a newline character (or CR+LF combination).

\t Matches a tab (ASCII 9).

\d Matches a digit [0-9].

\D Matches a non-digit.

\w Matches an alphanumeric character.

\W Matches a non-alphanumeric character.

\s Matches a whitespace character.

\S Matches a non-whitespace character.

\ Use \ to escape special characters. For example, \. matches a dot, and \\ matches
a backslash.

A Match at the beginning of the input string.

$ Match at the end of the input string.

Here are some likely uses for the special characters.

Regex Matches

1.3 123, 1z3, 133
1*3 13, 123, 1zdfkj3
\d\d 01, 02, 99, ..

\w+@\w+ a@a, email@company.com

A and $ are important to regex. Without them, regex match anywhere in the input. With * and $
you can make sure to match only a full string, the beginning of the input, or the end of the input.

Regex Matches Does not match
N.*3% 13, 123, 1zdfkj3 x13, 123x, x1zdfkj3x
MNd\d Olabc a0labc

\d\d$ xyz01 xyz0la

Character classes

You can group characters by putting them between square brackets. This way, any character in
the class will match one character in the input.

[abc] Match any of a, b, and c.

[a-Z] Match any character between a and z. (ASCII order)

[~abc] A caret ” at the beginning indicates "not". In this case, match anything other
than a, b, or c.

[+*2.] Most special characters have no meaning inside the square brackets. This

expression matches any of +, *, ? or the dot.

214

Here are some sample uses.

Regex Matches Does not match

[~ab] c,d,z ab

A1-9][0-9]*$ Any positive integer Zero, negative or decimal numbers
[0-9]*,.]?[0-9]+ .1, 1, 1.2, 100,000 12.

Grouping and alternatives

It's often necessary to group things together with parentheses (and).

Regex Matches Does not match
(ab)+ ab, abab, ababab aabb
(aa|bb)+ aa, bbaa, aabbaaaa abab

Notice the | operator. This is the Or operator that takes any of the alternatives.
With parentheses, you can also define subexpressions to remember after the match has
happened. In the below example, the string what is between (.)

Regex Matches Stores
a(\d+)a al2a 12
(\d+)\.(\d+) 12 land?2

In these examples, what is matched by (\d+) gets stored. The regex engine will allow you to
retrieve the stored value by a successive call. In Boolware, you get all matching values in a
single call, returned as an array of offset pairs (start + end).

Regex examples

Here are a few practical examples of regular expressions. They are provided for learning
purposes. In real applications, you should carefully design your regexes to match the exact use.

Email matching

It's often necessary to check if a string is an email address or not. Here's one way to do it.

~[A-Za-2z0-9_\.-1+@[A-Za-20-9 \.-1+[A-Za-2z0-9] [A-Za-2z0-9 15

Explanation

NA-Za-z0-9 \.-]+ Match a positive number of acceptable characters at the start of
the string.

@ Match the @ sign.

[A-Za-z0-9 \.-]+ Match any domain name, including a dot.

[A-Za-z0-9_][A-Za-z0-9_]$ Match two acceptable characters but not a dot. This ensures
that the email address ends with .xx, .xxx, .Xxxx etc.

This example works for most cases but is not written based on any standard. It may accept non-
working email addresses and reject working ones. Fine-tuning is required.

Example:

Match ('Email me at me@my.address.com, it''s my work address',
' ([A-Za-2z0-9 \\.-]1+)@([A-Za-z0-9 \\.-]+[A-Za-z0-9] [A-Za-2z0-9])")

215

Return:

Array

(

[0] => 12
[1] => 29

)

Parsing dates

Date strings are difficult to parse because there are so many variations. You can't always trust
VB's own date conversion functions as the date may come in an unexpected or unsupported

format. Let's assume we have a date string in the following format: 2002-Nov-14.

~\d\d\d\d-[A-Z] [a-z] [a-z]-\d\d$

Explanation

Md\d\d\d Match four digits that make up the year.

- Match the separator dash.

[A-Z][a-Z][a-Z] Match a 3-letter month name. The first letter is in upper case.
- Match the separator dash.

\d\d$ Match two digits that make up the day.

If a match is found, you can be sure that the input string is formatted like a date. However, a
regex is not able to verify that it's a real date. For example, it could as well be 5400-Qui-32. This
doesn't look like an acceptable date to most applications. If you want to prepare yourself for the
stranger dates, you'll have to write a more limiting expression:

~20\d\d- (Jan|Feb|Mar |Apr|May|Jun|Jul |Aug|Sep|Oct |Nov|Dec)-(0[1-9]|[1-2][0-
9113([011)$

Explanation

A20\d\d Match four digits that make up the year.

The year must be between 2000 and 2099. No other dates please!
- Match the separator dash.
(Jan|Feb|Mar|Apr |May|Junjdul Match the month abbreviation in English. Now you don't accept
|Aug |Sep|Oct|Nov|Dec) the date in any other language.

- Match the separator dash.

(O[1-9]][1-2][0-9]|3[01])$ Match two digits that make up the day. This accepts numbers
from 01 to 09, 10 to 29 and 30 to 31. What if the user gives
2003-Feb-31? There are limitations to what regexes can do. If
you want to validate the string further, you need to use other
techniques than regexes.

Web logs

Web server logs come in several formats. This is a typical line in a log file.

144.18.39.44 - - [01/Sep/2002:00:03:20 -0700] "GET /resources.html HTTP/1.1"
200 3458 "http://www.aivosto.com/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1)"

As you can see, there are several fields on the line. They conform to a complex format. The
fields are different from each other. A human-readable way to define the various fields is here:

216

host - - [date] "GET URL HTTP/1.1" status size "ref" "agent"

As you can see, there are fields such as host (visitor's Internet address), date and time
(enclosed in square brackets), an HTTP request with file to retrieve (enclosed in quotation
marks), numeric status code, numeric size of file, referred field (enclosed in quotation marks),
and agent (browser) name (enclosed in quotation marks).

To programmatically parse the line, you need to split it into fields, then look at each field. This is
a sample regex that will split the fields.

~MNSF) - = NTLR) e N A" a2 (\S*) LR\ (NdF) ([-0-91%) (\"([""1+)\")?
Explanation
MASH) Match any number of non-space characters at the start of the line.

- - Match the two dashes. They are actually empty fields that might have
content in another log file.

\[(F) ... \] Match the date inside square brackets. The date consists of a datetime
string, a space, and a 5-character time zone indication. To actually use the
date you'd need to write a more detailed regex to separate the year, month,
day, hour, minute, and second.

\"....2 (\S*) .A\" Match the HTTP request inside quotation marks. First there is a 3 to
4-character verb, such as GET, POST or HEAD. (\S*) matches the actual file
that is being retrieved. At the end, .* matches HTTP/1.1 or whatever protocol
was used to retrieve the file.

(\d*) Match a numeric status code.
([-0-91%) Match a numeric file size, or - if no number is present.
\"([(+HN9? Match the "ref" field. It's anything enclosed in quotation marks.

In this example, we've left "agent”" unmatched. That does no harm because $ is not used to
match the end-of-line. We can leave "agent" unmatched if we're not interested in the field.

This example has been taken from a web log file parser script. To use it in your own code, you
have to fine-tune it to suit your log file format. The regex assumes that lines come only in the

presented format. If, say, a field is missing or the file contains garbage lines, the regex may fail.
This results in an unparsed line.

Finding dollars
ANSNA{1, 3} (,\d{3})*(\.\d{2})2\b

Example

match ('Make \$50,000.00 fast with this no risk system!',
"NANSNANA{L, 3 (G, ANNA{3) * (AN .A\Nd{2}) 2\\b")

Returns

Array

(

[0] => 5

[1] => 15

)

TWo Blg INitials
\b[A-Z2]1{2}[a-z]+(["A-Za-z]+[A-Z] {2} [a-z]+) *\b
Example

match('I really ENjoy WRiting LIke THIS',

217

"\\b[A-Z]{2} [a-z]+ (["A-Za-z]+[A-Z] {2} [a-z]+) *\\b")

returns

1

1] => 14
1] => 15
1 => 22
1] => 23
1 => 27

CcAPS IOCK sYNDROME
\bla-z] [A-Z]+(["A-Za-z]+[a-z] [A-Z]+) *\b
Example

Match ('There is SOMETHING Wrong with mY cAPS 10CK Button!',
"\\bla-z] [A-Z]+ (["A-Za-z]+[a-z] [A-Z]+) *\\b")

Returns
Array

(

[0] => 30
[1] => 32
[2] => 33
[3] => 37
[4] => 38
[5] => 42

)

Extract integers

\b\d+ (\s|$)

Example

<call script="address = '3:E VILLAGATAN 7 LGH 1101'"/>

<call script="integers = split (chew(address, '"\\b\\d+(\\s|\$)"', , P
'multichew'))"/>

Returns

Array

(

[0] => 7
[1] => 1101
)

218

Chapter 5
COM object

This chapter describes how to use the Boolware COM object to create applications. The COM
object is a natural first-choice API if using Microsoft tools such as for example ASP or Visual
Basic.

General

A COM object is created using a symbolic name, its 'ProgID’. SoftboolCOM has the ProgID
"Softbool.Session.1".

SoftboolCOM exposes an object hierarchy that reminds about a relational database, with
additions to reach Boolware’s characteristics such as keyword searching and index term listings
etc.

At the top of the hierarchy is the "Session" object. It has properties such as "Version" and
"ErrorText" as well as methods such as "Connect" and "Disconnect". In addition, it also contains
the list of databases registered with Boolware. Each database in the list in turn contains a list of
database tables, in turn containing a list of columns.

Error handling model

By default, any error caused when calling Boolware will cause an exception. The principle idea
behind this reasoning is that bug free applications will not make bad calls to Boolware, and if
they do, these errors should not pass undetected. This model works fine for many projects, and
maybe especially well for Visual Basic programs that rely on "on error" statement to handle
these errors. In C#, the following syntax should be used:

try {
CallBoolware () ;
}

catch (System.Runtime.InteropServices.COMException ce)

{

// Handle error here

}

However, it may not fit other languages or programmers equally well. So, the generation of
exceptions on error can be inactivated, using the Session.Exceptions property. When
inactivated, the application is fully responsible for checking all return codes from Boolware.

Session

This is the top level object of the hierarchy.

Properties

219

AutoTruncate

Boolean value that controls if searches should be made for any word that "begins" the same
(true), or if an exact match is required (false).

ConnectTimeout
Set the client socket connection timeout in msec. Default is 0 indicate no maximum timeout

Database
The currently selected database. Each session can have one open database at a time.

Databases
The list of databases registered with Boolware.

ErrorCode

Integer value that contains the last error code. Zero if no error occurred, negative if an error
occurred. Positive if a warning or informational message was generated.

ErrorText
String that contains the error message for the current ErrorCode.

Exceptions
Boolean value that controls if Boolware errors are flagged as exceptions or not.

Intl and Int2
Two integer values that will be set by the Execute command.

Version

String that holds version on the format:
Boolware client version: 2.8.0.75

Methods

Close
Closes the current database.

Connect(Server, Session)

Connects to a Boolware server. The "Server" parameter should be an IP address or a name that
can be looked up using DNS.

Response = ConnectExecute(Server, Session, Encoding, StateLess, CMD)

Connects to a Boolware server and run supplied CMD immediately and return the outcome of
the command.

In the section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Parameters:
Server an IP-address or a name that can be looked up by using DNS

220

Session could contain a session name

Encoding should be set to the string "utf-8" if session should be a unicode session, otherwise
it will be a "ISO-8859-1" session

StateLess must contain 1 if the query should be run stateless, which means the session will
be logged out disconnected directly. If O is specified the session remains in
Boolware and it is still connected.

CMD string containing the actual command

Response = ConnectXML(Server, Session, StateLess, Request)
Used to reach the Boolware XML API when connecting. This APl is more powerful than the
standard API, in the sense that more can be done per network call.

Parameters:

Server an IP-address or a name that can be looked up by using DNS

Session could contain a session name

StateLess must contain 1 if the query should be run stateless, which means the session will
be logged out disconnected directly. If O is specified the session remains in
Boolware and it is still connected.

Request contain the XML request

ConnectXMLNoResponse(Server, Session, Request)
Used to reach the Boolware XML API when connecting. This APl is more powerful than the
standard API, in the sense that more can be done per network call.

Parameters:

Server an IP-address or a hame that can be looked up by using DNS
Session could contain a session name

Request contain the XML request

No XML response will be returned. To get the result the Table.Recordset.Moveto object should
be used.

Disconnect
Disconnects from Boolware.

Response = ExecuteXML (Request)

Used to reach the Boolware XML API. This APl is more powerful than the standard API, in the
sense that more can be done per network call.

XMLNoResponse(Request)
Used to reach the Boolware XML API. This APl is more powerful than the standard API, in the
sense that more can be done per network call.

Parameters:
Request contain the XML request

No XML response will be returned. To get the result the Table.Recordset.Moveto object should
be used.

GetPerfCounters

Note! This function is deprecated, please use the execute command perfcounters instead.
Read more in chapter 1 "Execute commands in Boolware".

221

Returns all performance counters
Tips! Check out the Boolware Manager on the "Performance”-tab to see content of all the
counters.

Open(DataSourceName)

Selects a database to be made current. The "Name" parameter is the database name, as
registered with Boolware.

Example

Set SB = CreateObject ("Softbool.Session.1")
SB.Connect "127.0.0.1", "MySession"
Debug.Print SB.Version

Debug.Print SB.Databases.Count

SB.Open "MyDatabase"

Databases

A collection of the databases that have been registered with Boolware.

Properties

Count
Number of databases.

Item (default)
Identifies one Database in the collection.

Example

Set SB = CreateObject ("Softbool.Session.1")
SB.Connect "127.0.0.1", "MySession"
Debug.Print SB.Version

Debug.Print SB.Databases.Count

For I = 0 To SB.Databases.Count - 1
Set DB = SB.Databases (I)
If DB.Status = 0 Then

Debug.Print DB.Name & " - " &
DB.DataSourceName & " - " &
DB.Remark & " - " &
DB.Status
End If
Next
Database

Corresponds to the database.

222

Properties

DataSourceName
The DSN (Data source name) of the database. It is used to identify the data source.

Name
The Database name

Remark
A short descriptive text for the database

Status
Can be one of the following:

0 Online (available for querying)

1 Loading (index loading, not available)

2 Offline (not available)

3 Pending (index loading, not available)

4 Readonly (available for querying, but no online updates).
Tables

A collection of the tables that exists in this database.

Methods

Execute

Issues commands to Boolware, that are executed on all the database Tables. Execute returns
an error code, where zero means OK.

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Example

SB.Database.Execute "relate (Customers) find Products.ProductName:uncle"
Set Table = SB.Database.Tables ("Customers")
Set Cursor = Table.Recordset
Cursor.SelectCols = "*"
For I = 1 To Table.HitCount
Cursor.MoveTo T
Debug.Print Cursor.Fields (0) .Value
Next

Table

Corresponds to a database table.

223

Properties

Fields
A collection of the columns that exists in the table.

HitCount
Number of found tuples, as a result of the last query.

Indexed
Indicates if Table is indexed at all.

Name
This table’s name

RecordCount
Total number of tuples in this table.

Recordset
A collection of tuples, current search result.

Status

Table status, one of the following:
0 Online

1 Loading

2 Offline

3 Pending

4 Readonly

Methods

Execute

Used to execute Boolware commands.

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Example

Set Table = SB.Database.Tables ("Companies")
Set RS = Table.Execute "find [Name]:s*"
If RS.Count = 0 Then

Exit Sub
End If
RS.FetchSize = 100
RS.SelectCols = "*x"

224

For R =1 To 100
RS.MoveTo R
If R =1 Then
For I = 0 To RS.Fields.Count - 1
Debug.Print RS.Fields(I) .Name
Next
End If
For I = 0 To RS.Fields.Count - 1
Set Field = RS.Fields(I)
Debug.Print Field.Name &
"= v g Field.Value
Next
Next

Field

Corresponds to a table column.

Properties

ActualSize

A long value. Use the ActualSize property to return the actual length of a Field object’s value.
For all fields, the ActualSize property is read-only.

DefinedSize
Returns a Long value that reflects the defined size of a field as a number of bytes.

The DefinedSize and ActualSize properties are different. For example, consider a Field object
with a declared type of adVarChar and a DefinedSize property value of 50, containing a single
character. The ActualSize property value it returns is the length in bytes of the single character.

Indexed
Indicates how this Field is indexed. See the "Indexed" class.

Name
Returns a String value that is the field name.

NumericScale

Indicates the scale of numeric values in a Field object. Sets or returns a Byte value, indicating
the number of decimal places to which nhumeric values will be resolved.

Precision

Indicates the degree of precision for numeric values in a Field object. Returns a Byte value,
indicating the maximum total number of digits used to represent values.

Type
Indicates the type of a Field object.

225

Value
Indicates the value assigned to a Field object.

Example

For I = 0 To RS.Fields.Count - 1
Debug.Print RS.Fields(I) .Name

Next

For I = 0 To RS.Fields.Count - 1
Set Field = RS.Fields(I)
Debug.Print Field.Name & _

" =" & Field.Value
Next

Indexed object

Indicates how a field is indexed.
Properties

Word
True if column is Word indexed.

String
True if column is String indexed.

Compress

True if column is "Compressed" before extracting words. Compressed means that white space
and punctuation characters is removed around single letters.

Numeric
Indicates if this column is numerically indexed.

Indexed
True if column is indexed at all.

Field
True if column is field indexed.

Freetext

True if column is part of 'free-text’, i.e. searchable regardless of in which column the text
appears.

Permutated
True if column is permutated.

Grouped
True if column index is grouped, for enhanced performance.

Near
True if column is proximity searchable.

226

Nearline
True if column is proximity searchable, within same line.

Rankable
True if column is rank able (see Recordset.RankMode).

Phonetic
True if column is indexed as words "sound" rather than exact spelling.

Stemmed

True if column is stemmed.

Similarity

True if column is part of similarity index.

LeftTruncation

True if column supports high speed left truncated searches (find all records that contains words
that end the same).

MarkupCoded
True if column is parsed to avoid indexing markup tags.

Stopwords
True if column should use stop words.

MemoryMapped
True if column index is mapped into core memory.

Alias
True if the field is an non index alias field

GeoWGS
The field contains coordinate data in Long or Lat in WGS84 format

GeoMeter
The field contains coordinate data in meter format e.g. RT90

GeoMultiple
The field contains coordinate data both for Long and Lat in either WGS84 or Meter format

StringAsls
The field is indexed as exact string

WordAsls
The field is indexed as exact word

WithinString
The field is indexed with ‘Within string’ property

Within
The field is indexed with Within property

Case
The field is indexed case sensitive

227

XmlField
The field contains XML data

SubField
The field is a XML-subfield

Presort
The field is presorted

DataField
The field data is stored in a Boolware data file

PerfCounters

Holds all performance counters received from Boolware server.

Properties

NumCounters
Number of counters stored in counters and timerCounters.

SrvVersion
Version of the connected Boolware server.

SrvStarted
Server start in seconds since 1970 01 01 00:00:00

TotSessions
Total number of sessions connected to the Boolware server

NumSessions
Number of session connected just now to the Boolware server

PeakSessions
Highest number of session connected at a time

ExecSessions
Number of executing sessions just now in Boolware server

PeakexecSessions
Number of the highest executing sessions at a time

Errors
Error reported by Boolware server

TimerStart
Time for the last reset of counters in the server in seconds since 1970 01 01 00:00:00

TimerElapsed
Seconds past since timerStart was reset

228

NumCommands
Number of commands performed by the Boolware server

Counters
Array of Counter classes each holding respectively counter values see class Counter

TimerCounters
Array of TimerCounter class each holding respectively elapsed time value

Counters

A collection of performance counters.

Properties

Count
Number of counters.

Item (default)
Identifies one Counter in the collection.

Example

Set SB = CreateObject ("Softbool.Session.1")
SB.Connect "127.0.0.1", "MySession"
SB.GetPerfCounters

Debug.Print SB.PerfCounters.NumCounters

For I = 0 To SB.PerfCounters.NumCounters - 1
Set pc = SB.PerfCounters.Counters(I)
Debug.Print pc.CounterName

Next

Counter

Counter contains the actual values correlate to the counter type

Properties

CounterType
Identifier of the counter, see CounterType

CounterName
Literal name of the counter

Accumulated
Number of times this counter is updated

ItemValue
Accumulated values for the counter, see CounterAttribute

229

ThreadTimeValue
Accumulated thread time values for the counter, See CounterAttribute

WallTimeValue
Accumulated wall clock time values for the counter, see CounterAttribute

TimerCounters

A collection of TimerCounter counters.

Properties
Count

Number of counters.

Item (default)
Identifies one TimerCounter in the collection.

TimerCounter

TimerCounter contains elapsed server tick counts if connected to a 64-bit Boolware server (in
milliseconds).

Properties

CounterType
Identifier of the counter, see CounterType

ElapsedTime
Elapsed time since the Boolware server was started (in milliseconds)

InfoString
Name of the counter

CounterAttribute

CounterAttribute contains the total accumulated value and the highest and lowest values.
It also contains a descriptive counter name

Properties

CounterName
Name of the counter

Accumulated

The accumulated value for the counter
Depending on the counter type this value contains:
counter type is ct. XMLREQUESTS - number of xml performed requests

230

counter type is ct. BOOLEANQUERIES - number of hits for boolean queries
counter type is ct_SIMQUERIES - number of hits for similarity queries
counter type is ct. DATAFETCH - number of tuples fetched

counter type is ct_INDEXTERMS - number of index terms fetched

counter type is ct_SORTINGS - number of tuples sorted

MaxValue
The maximum value for the counter

MinValue
The minimum value of the counter

Recordset

A Recordset object represents the entire set of records from a result of an executed query.

Properties

Count
Number of found tuples.

FetchSize
Number of records to fetch per network trip. Can improve performance if set higher than 1.

Fields
A collection of the fields part of the result.

Order
The current record order being used.

SelectCols
The columns that should be part of a result row.

Methods

MoveTo(HitNo)

Reads a specific tuple. The "HitNo" parameter can be between 1 and 'Count’; otherwise an error
will occur. Note that this is a scroll cursor — you can fetch any resultrows in any order.

GetValue(FieldName / FieldIndex)

Reads a specific column value from the current tuple. You may use either a name, or an index
number to designate the desired column. This is faster than using Fields.Field("Name").Value,
since COM doesn’t have to create temporary objects.

231

Words

A list of searchable words from the database (indexed terms). The desired column shall be
specified.

Properties

Method

The desired indexing method to list from
1 Word indexing

2 String indexing

4 Phonetic words

8 Reversed indexing

16 Stemmed words

Zoomed
If true, lists only words part of the current result.

Item
The current term.

Methods

IndexOf(Term)
Returns the ordinal index for an index word.

Example:

Set Words = Table.Words (Table.Fields (0) .Name)
For W= 0 To 9
Set Word = Words (W)

If Word.HitCount = -1 Then
Exit For
End If
Debug.Print Word.String; Word.HitCount
Next

Word

One searchable word from a Boolware index.
Properties

HitCount
Number of records that contains the current word.

String
The current word.

Example:

Set Words = Table.Words (Table.Fields (0) .Name)
For W =0 To 9
Set Word = Words (W)

232

If Word.HitCount = -1 Then
Exit For
End If
Debug.Print Word.String; Word.HitCount
Next

Chapter 6
Java client

This chapter describes how to use the Boolware Java client to create applications.

General

The Boolware Java client is distributed as a "Java package". Create an instance of the
Boolware.Client class, and then use the members of this class to query the database, fetch
tuples etc.

The client communicates with the Boolware server using the character encoding UTF-8, which
means that all XML/JSON calls made must have the "encoding" attribute set to UTF-8.

Client

extends java.lang.Object
This is the Boolware client class. Create an instance of this class, connect it with a Boolware
server and then use the methods of this class to query the database, fetch tuples etc.

Fields

connectTimeout

public int connectTimeout
Connect time out set to milliseconds for socket connection timeout.

Set the connectTimeout to a proper value, e.g. 5000; wait for 5 seconds, before the call to
connect or executeXML with the connect is done.

The default value is 0 which indicates that it will wait until connected or until a system error
occurs.

Methods

connect

public int connect(java.lang.String server,
java.lang.String sessName)
throws java.io.lOException, java.net.SocketTimeoutException
Connects this client with Boolware server.

Parameters:

233

server — the name or IP address. of the server to connect with.

sessName — the session ID to use. If empty, Boolware will create a unique session ID
which can be read using getSettings().

Returns:

zero on success; otherwise a negative error or positive warning.

See Also:
connectTimeout

disconnect

public int disconnect(boolean logout)
throws java.io.lOException

Disconnects from Boolware server.

Parameters:
logout — logs out the session if true; otherwise just disconnects.

Returns:
zero on success; otherwise a negative error or positive warning.

attach

public int attach(java.lang.String dsn)
throws java.io.lOException

Attaches to a database (makes it current).

Parameters:
dsn - the Data Source Name of the desired database.

Returns:
Zero on success; otherwise a negative error or positive warning.

detach

public int detach()
throws java.io.lOException

Detaches from a database.

Returns:
zero on success; otherwise a negative error or positive warning.

execute

public int execute(String table, String cmd)
throws java.io.lOException

234

Executes a query at Boolware.

This method could only be used for the boolean commands: FIND, AND, OR, NOT and XOR
and the browse commands BACK and FORWARD. The method is used when you query one
table.

Use getHitCount() to inspect number of matching records when this method returns zero
(success).

Use getQueryTime() to get time of the current query.

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Returns:
zero on success; otherwise a negative error or positive warning.

execute

public Response execute(String cmd)
throws java.io.lOException

Executes a command at Boolware.

public Response execute(String server, String sessName, boolean stateLess, String cmd)
throws java.io.lOException

Executes a command at Boolware with an automatic connection to Boolware server and returns
a reply depending on the command

If sessName is an empty string Boolware will automatically generate a session hame, else the
specified sessName will be used.

If stateless is set to true then Boolware server will automatically disconnect the connection. If
stateless is set to false then the connection will not be disconnected but the session will
continue to exist on the Boolware server until the function disconnect(true) is called or until the
session has timed out due to inactivity.

Parameters:

server A computer name or an IP-address to Boolware server
sessName The name of the session

stateless Should be set to true or false

cmd The actual command

These are examples of commands that can be executed using this method: TABLE, RELATE,
FIND, AND, OR, NOT and XOR; BACK and FORWARD; commands that start with SET and
GET, commands that handle the search set/search queries/search results (eg SAVEQUERY,
DELETERESULT, REVIEWSET and the RELATE command (join).

If you want to query more than one table: TABLES(tablel, table2, table3...) FIND "column
name":query terms.

If you want to perform a related search: RELATE("target table") FIND "search table"."column
name":query terms

Use getHitCount("table name") to inspect number of matching records for the specified table,
when this method returns zero (success).

235

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Returns:
A Response object. See description on Response below in this chapter.
NULL on error.

executeXML

public java.lang.String executeXML (java.lang.String server,
java.lang.String sessName,
boolean stateless,
java.lang.String request)
throws java.io.lOException, java.net.SocketTimeoutException

Performs an XML request with an automatic connection to Boolware server and returns the
reply as an XML document.

If sessName is an empty string Boolware will automatically generate a session name, else the
specified sessName will be used.

If stateless is set to true then Boolware server will automatically disconnect the connection. If
stateless is set to false then the connection will not be disconnected but the session will
continue to exist on the Boolware server until the function disconnect(true) is called or until the
session has timed out due to inactivity.

Parameters:

server A computer name or an IP address to Boolware server
sessName The name of the session

stateless Should be set to true or false

request The XML request

Returns:

A response formatted as an XML document

public int executeXML (java.lang.String server,
java.lang.String sessName,
java.lang.String request)
throws java.io.lOException, java.net.SocketTimeoutException

Performs an XML request with an automatic connection to Boolware server.

If sessName is an empty string Boolware will automatically generate a session name, else the
specified sessName will be used.

To fetch the retrieved data the method fetchTuples should be used.

Parameters:

server A computer name or an IP address to Boolware server
sessName The name of the session

stateless Should be set to true or false

request The XML request

Returns:

236

zero on success; otherwise a negative error or positive warning.

public java.lang.String executeXML (java.lang.String request)
throws java.io.lOException

Executes an XML request at Boolware and returns its response.

Parameters:
request — the XML request.

Returns:
A response, as an XML document.

executeXMLByteResponse

public java.lang.Byte[] executeXMLByteResponse(java.lang.String request)
throws java.io.lOException

Executes an XML request at Boolware and returns its response in a byte array.

Parameters:
request — the XML request.

Returns:

A response, as an XML document in a byte array.

executeXMLNoResponse

public int executeXMLNoResponse(java.lang.String request)
throws java.io.|OException

Performs an XML request with an automatic connection to Boolware server without formatting or
returning an XML document.

To fetch the retrieved data the method fetchTuples should be used.

Parameters:
request The XML request

Returns:
Zero on success; otherwise a negative error or positive warning.

getHitCount

public int getHitCount()

Returns current hit count (number of found records).

getHitCount

public int getHitCount(String tableName)

237

Returns current hit count (number of found records) for the specified Table.

getErrorCode

public int getErrorCode()

Returns the last error code.

getErrorMessage

public java.lang.String getErrorMessage()

Returns the last error message.

getNumberDatabases

public int getNumberDatabases()
throws java.io.IOException

Returns number of databases.

Returns:
number of databases.

getDatabaselnfo

public DBInfo getDatabaselnfo(int dbNo)
throws java.io.lOException

Returns meta-data information about a database.

Parameters:
dbNo - database index, starting from zero.

Returns:

DBInfo object.
NULL on error.

getNumberTables

public int getNumberTables()
throws java.io.lOException

Returns number of tables.

238

getTablelnfo

public TableInfo getTablelnfo(int tableNo) throws java.io.lOException
public TableInfo getTablelnfo(jave.lang.String tableName) throws java.io.lOException

Returns information about a table.
Parameters:

tableNo - table index, starting from zero.
tableName - name of the requested table
Returns:

Tablelnfo object.
NULL on error.

getNumberColumns

public int getNumberColumns(java.lang.String table)
throws java.io.IOException

Returns number of columns.

getColumninfo

public Columninfo getColumninfo(java.lang.String table, int columnNo)
throws java.io.|OException

Returns info about a column.

Parameters:

table - the table name in the currently attached database.
columnNo - column index.

Returns:

Columninfo object.
NULL on error.

getColumninfoEx

public ColumninfoEx getColumninfoEx(java.lang.String table, int columnNo)
throws java.io.lOException

Returns extended info about a column.

Parameters:

table - the table name in the currently attached database.
columnNo - column index.

Returns:

ColumninfoEx object.
NULL on error.

239

getKeyValue

public java.lang.String getKeyValue(java.lang.String table,
java.lang.String column,
int hitNo)
throws java.io.lOException

Reads a primary or foreign key value.

Parameters:

table - the desired table.

column - the desired column (must be primary or foreign key).
hitNo - the hit number, starting from zero.

Returns:

the requested value.

getindexWord

public IndexWord[] getindexWord (java.lang.String table,
java.lang.String column,
int zoomed,
int type,
int count,
java.lang.String seed)
throws java.io.|IOException

Returns an array of sorted indexed terms (searchable keywords).

Parameters:

table - the desired table.

column - the desired column. Special columns $pk, $vsm, $freetext and $category may
be used. NOTE As these columns contain a special character ($), they have to
be enclosed within quotes (") or brackets ([]).

zoomed - true if only to include words that are part of the current result.

type - the desired type of terms. A list of all available types can be found in chapter
"Execute commands in Boolware" and command "indexex".

count - desired number of words to read.

seed - a string from where Boolware should start listing terms.

The parameter 'column’' could have more information: type of presentation and order. There are
two different types of presentation: term (default) when the terms should be presented in
alphabetical order and count when the terms should be presented in frequency order (number
of occurrences). There are to sort orders: asc and desc. If no sort order is specified ascending
will be used.

The parameter seed could have a special sub-command searchterms which indicates that you
want to get statistics on query terms used when query Boolware durting a certain time interval.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms".

Returns:

an array of IndexWord objects.
NULL on error.

240

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

getindexWord

public IndexWord[] getindexWord(java.lang.String table,

java.lang.String column,
int zoomed,
int type,
int count,
java.lang.String seed,
int continuation)

throws java.io.lOException

Returns an array of sorted indexed terms (searchable keywords).

Parameters:

table - the desired table.

column - the desired column. Special columns $pk, $vsm, $freetext and $category may
be used. NOTE As these columns contain a special character ($), they have to
be enclosed within quotes (") or brackets ([]).

zoomed - true if only to include words that are part of the current result.

type - the desired type of terms (see getindexWord above).

count - desired number of words to read.

seed - where Boolware should start listing terms (term, term no. or index type).

continuation - if false the seed parameter will be used else continuation from last term.

The parameter 'column' could have more information: type of presentation and order. There are
two different types of presentation: term (default) when the terms should be presented in
alphabetical order and count when the terms should be presented in frequency order (number
of occurrences). There are to sort orders: asc and desc. If no sort order is specified ascending
will be used.

The parameter seed could have a special sub-command searchterms which indicates that you
want to get statistics on query terms used when query Boolware during a certain time interval.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms".

Example:

This is an example how to get a grouped index hierarchical presented ordered by occurrences
(type = 10). In table ‘Person’ there is a column ‘Date’ which is grouped indexed. The date is
stored in the following notation: yyyymmdd and grouped: 4, 6, 8.

The terms should be fetched from the entire table (zoom = 0). The type is 10 and the requested
number of terms 10. The empty string means that the fetch should start from the beginning of
the index.

The command is as follows:

getindexWord("Person”, "Date", 0, 10, 10, "™, 0)

The fetched terms are return as an array of object type IndexWord:

241

hitCountZoomed hitCount termNo text

14837 14837 0 1945
1318 1318 0 194503
60 60 0 19450321
52 52 0 19450310
48 48 0 19450327
47 47 0 19450314
32 32 0 19450331
32 32 0 19450319
25 25 0 19450307
12 12 0 19450303

When the parameter ‘zoom’ is inactive the hitCountZoomed and hitCount will be the same.
The element termNo returns always 0 in this version of Boolware.

If you want to continue and fetch the next 10 terms you just have to activate the parameter
‘continuation’.
getindexWord("Person”, "Date", 0, 10, 10, ™, 1)

The fetched terms are return as an array of object type IndexWord:

hitCountZoomed hitCount termNo text
11 11 0 19450301
11 11 0 19450311
10 10 0 19450317
9 9 0 19450313
9 9 0 19450308
9 9 0 19450316
8 8 0 19450302
8 8 0 19450322
7 7 0 19450324
7 7 0 19450304

Returns:

an array of IndexWord objects.
NULL on error.

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

getPerfCounters

Note! This function is deprecated, please use the execute command perfcounters instead.
Read more in chapter 1 "Execute commands in Boolware".

public PerfCounters getPerfCounters()
throws java.io.lOException

Returns all performance counters from connected Boolware server.

Tips! Check out the Boolware Manager on the "Performance”-tab to see content of all the
counters.

242

getQueryTime
public float getQueryTime()
Returns time taken for last query.

Note that a call to this method is only meaningful if the execute(String table, String cmd)
has been performed (not execute(String cmd)).

getRankMode

public int getRankMode(java.lang.String table)
throws java.io.IOException

Returns the current rank mode.

Parameters:
table - the desired table.

Returns:

rankmode

. BNORANK

. BOCCRANK
. BFREQRANK
. BSIMRANK

; I/ No ranking

; Il Rank by occurrence

; Il Rank by frequency

; I/ Rank by similarity

. BSORTRANK 4; |/ Rank by sort (Ascending)

. BSORTDRANK 5; I/ Rank by sort (Descending)

. BWEIGHTOCCRANK = 6; // Rank by weighted occurence
. BWEIGHTFREQRANK = 7; // Rank by weighted frequency
. BEACHTERMOCCRANK = 8; // Rank on specified Term

wWN PO

. BCUSTOMRANK =9; // Rank by Custom
. BFUZZYRANK = 10; // Rank by fuzzy
setRankMode

public int setRankMode(java.lang.String table,
int rankMode)
throws java.io.lOException

Sets the new rank mode, returning the previous or a return code.

NOTE a Query will reset the rank mode to BNORANK except when it is a similarity query
(BSIMRANK) or a query on weight search terms (BWEIGHTFREQRANK).

Parameters:

table - the desired table.

rankmode - the new desired rank mode.

. BNORANK = 0; // No ranking

. BOCCRANK =1; // Rank by occurence
. BFREQRANK = 2; I Rank by frequency

. BSIMRANK
. BSORTRANK
. BSORTDRANK

3; /l Rank by similarity
4; / Rank by sort (Ascending)
5; /l Rank by sort (Descending)

243

. BWEIGHTOCCRANK = 6; // Rank by weighted occurrence
. BWEIGHTFREQRANK = 7; // Rank by weighted frequency
. BEACHTERMOCCRANK = 8; // Rank on specified Term

. BCUSTOMRANK =9; // Rank by Custom
. BFUZZYRANK = 10; // Rank by fuzzy
Returns:

the previous rank mode or a return code.

getVersion

public java.lang.String getVersion()
throws java.io.lOException

Returns the Boolware Server version followed by the Boolware Java Client version separated by
CRILF.

Returns:
a string containing the Boolware version.

getClientVersion

public java.lang.String getClientVersion()
throws java.io.lOException

Returns the version of the Boolware Java Client.

Returns:
A string containing the version of the Boolware Java Client.

reconnectlfExists

public int reconnectIfExists(java.lang.String server,
java.lang.String sessName)
throws java.io.lOException, java.net.SocketTimeoutException

Connect the current session to Boolware server on requested computer.
Parameters:

const char *server - name of server or IP-address, where Boolware server executes
const char *sessName - the name of the session to be connected

Boolware Server must be running on a computer in the network, which could be reached by the
client before the connection could take place.

The parameter ‘server’ should be the name of the computer in the network or its IP-address; for
example 192.168.0.1.

244

Note that the computer the client is running on must be able to access the server where
Boolware is installed.

Returns:
zero if everything went ok, else a negative error code or positive warning

sortResult

public int sortResult(java.lang.String table,
java.lang.String expression)
throws java.io.lOException

Sorts the current search result. The sort will be performed on the contents of the specified
columns. You could also set the sort order; ascending or descending. By the parameter
emptydata=first/last you could control where to "sort" records that do not contain any data in the
sort column; first or last. If the first sort column is indexed as string or numeric you could specify
the number of records to sort. The number is specified after order (columnl desc:100).

Parameters:
table - the desired table.
expression - the desired column(s) separated by comma (,)

expression syntax:

<colname> [asc/desc[:nn]] [emptydata='first/last'] [sortalias='coll, col2']l [,]
where :

colname the column name to perform the sort on.

optional:

asc/desc ascending or descending; default is ascending

:nn sort the nn first at each sort request

emptydata first/last set fictive sort order if no data in column
first indicates that the empty value will be treated as sort value ascii 0
last indicates that the empty value will be treated as sort value ascii 255 default is
last

sortalias upon empty data in colname use another column to collect data that will be used
for sorting.
Up to 5 sortalias columns, comma separated, can be given i.e. if coll is empty try
next specified column col2 etc.
If column name needs quotation marks make sure to double quote if using the
same quotation mark as araound the whole sortalias expression. E.qg.
sortalias='"'""'Col 1'', "'Col 2'"'
sortalias="'Col 1', 'Col 2'"

, separates multiple sort columns

Examplel: The result after a Query is 60.000 articles and you want to sort on the type of
publication in ascending order and the publication date in descending order (the newest article
first). If no data in the sort column PubDate these records should be "sorted" first.

sortResult("Articles", "Publication asc, PubDate desc emptydata=first")

For a deeper description and more examples see Chapter 2 "API description" section BCSort()
above.

245

Example2: The result after a Query is 60.000 articles and you want to sort on the publication
date in descending order (the newest article first). You only want to present the first 25 articles.
Publication date must be indexed as string.

sortResult("Articles”, "PubDate desc:25")

For a deeper description and more examples see Chapter 2 "API description" section BCSort()
above.

fetchTuples

public Tuple[] fetchTuples(java.lang.String table,
java.lang.String columns,
int hitNo,
int blockSize,
int maxSize)
throws java.io.lOException

Fetches tuples from the database. This method is capable of fetching XML element content as
well as standard columns.

Parameters:

table - the desired table.

columns - the columns/elements to fetch.

hitNo - the requested record index, starting from zero.
blockSize - number of records to fetch.

maxSize - maximum size of any column (zero means no limit).
Returns:

an array of Tuple objects.
NULL on error.

fetchVectors

public Tuple[] fetchVectors(java.lang.String table,
int vector,
int content,
int hitNo,
int blockSize)
throws java.io.lOException

Reads exported record vectors, in binary or text format.

Parameters:

table - the desired table.

vector -

content -

hitNo - the requested record index, starting from zero.

blockSize - number of records to fetch.
Returns:

an array of Tuple objects.
NULL on error.

246

createCalcColumn

public int createCalcColumn (java.lang.String table,
java.lang.String column,
java.lang.String formula)
throws java.io.lOException

Creates a calculated column.

Parameters:

table - the table, in which to add a new column.

column - the name of the new column.

formula - the mathematical expression that forms the column value.
Returns:

zero on success; otherwise a negative error or positive warning.

removeCalcColumn

public int removeCalcColumn (java.lang.String table,
java.lang.String column)
throws java.io.lOException

Removes a calculated column.

Parameters:

table - the table, from where to remove the column.
column - the name of the column to remove.
Returns:

Zero on success; otherwise a negative error or positive warning.

computeStatistics

public Statistics computeStatistics(java.lang.String table,
java.lang.String column,
int tileCount)
throws java.io.lOException

Computes statics for a given column, based on the current search result. The parameter
tileCount determines the number of percentiles you want. This value must be between 3 and 8.

To get all limit values for a specified group you should use the execute or executeXML. The
command statistics for execute is described in Chapter 1 section "Execute commands in
Boolware ".

Parameters:

table - the table.

column - the column to compute statistics for.
tileCount - 3 for tertials, 4 for quartiles etc.

247

Returns:
Statistics() object.
NULL on error.

getHistory

public History[] getHistory(java.lang.String table)
throws java.io.lOException

Gets query history items.

Parameters:
table - the table that search history is retrieved for.

Returns:

an array of History() items.
NULL on error.

getSettings

public Settings getSettings()
throws java.io.lOException

Gets session settings.
Returns:

a Settings() object.
NULL on error.

setSettings

public int setSettings(Settings settings)
throws java.io.lOException

Sets session settings.

Parameters:
settings - the new settings.

Returns:
zero on success; otherwise a negative error or positive warning.

getSettingsXML

public java.lang.String getSettings XML ()
throws java.io.lOException

Gets session settings as XML

248

Returns:
settings as an XML document.

setSettingsXML

public int setSettings XML (java.lang.String XML)
throws java.io.lOException

Sets session settings as XML.

Parameters:
XML - the new settings.

Returns:
zero on success; otherwise a negative error or positive warning.

Column

extends java.lang.Object

Contains one column value, as read from the underlying data source. Part of Tuple.

Fields

name

public java.lang.String name
The name of this column

type
public int type
The data type of this column, ODBC coded

fetchSize

public int fetchSize
Fetch size

width

public int width
The maximum width of this column

length
public int length
The actual length of this value

value

public java.lang.String value
The data value, may be null and may also include null

bytes

public java.lang.String bytes
The data value (if it's a BLOB column). May be null.

249

Columninfo

extends java.lang.Object

Holds meta-data information about one column. Returned from Client.getColumninfo().

Fields

name
public java.lang.String name
Column name

flags
public int flags
Boolware indexing flags. Values are:

. Ox1 - String indexing

. 0x2 - Word indexing

. 0x4 - Phonetic words

. 0x8 - Proximity search

. 0x10 - Similarity search

. 0x20 - Left truncated search

. 0x40 - Proximity within line

. 0x80 - Normalize string (compress)
. 0x100 - Word permutations

. 0x200 - Stemmed words

. 0x400 - Grouped keys (fast interval)
. 0x800 - Rank able column

. 0x1000 - Categorization field

. 0x10000 - Index with field ID

. 0x20000 - Table global free text index

. 0x40000 - Non indexed alias field

. 0x100000 - Field contains markup elements
. 0x200000 - Field uses stop words

. 0x400000 - Field indexed with Within

. 0x1000000 - Foreign key

. 0x2000000 - XML content column

. 0x4000000 - XML subfield (part of XML content column)
. 0x8000000 - Computed (virtual) column

. 0x10000000 - Case sensitive

. 0x40000000 - Memory mapped

size
public int size
Maximum size of this column

type
public int type
ODBC coded data type.

primaryKeySequence

public int primaryKeySequence
If part of primary key, sequence number.

250

decimalCount
public int decimalCount
Number of decimals

ColumninfoEx

extends java.lang.Object

Holds meta-data information about one column. Returned from Client.getColumninfoEx().

Fields

name
public java.lang.String name
Column name

flags
public int flags
Boolware indexing flags. Values are:

. Ox1 - String indexing

. 0x2 - Word indexing

. 0x4 - Phonetic words

. 0x8 - Proximity search

. 0x10 - Similarity search

. 0x20 - Left truncated search

. 0x40 - Proximity within line

. 0x80 - Normalize string (compress)
. 0x100 - Word permutations

. 0x200 - Stemmed words

. 0x400 - Grouped keys (fast interval)
. 0x800 - Rank able column

. 0x1000 - Categorization field

. 0x10000 - Index with field ID

. 0x20000 - Table global free text index

. 0x40000 - Non indexed alias field

. 0x100000 - Field contains markup elements
. 0x200000 - Field uses stop words

. 0x400000 - Field indexed with Within

. 0x1000000 - Foreign key

. 0x2000000 - XML content column

. 0x4000000 - XML subfield (part of XML content column)
. 0x8000000 - Computed (virtual) column

. 0x10000000 - Case sensitive

. 0x40000000 - Memory mapped

flags2

public int flags2
Boolware extending indexing flags. Values are:

. 0x1 - Geoposition Long or Lat in WGS84 format
. 0x2 - Geoposition in metric format e.g. RT90

. 0x4 - Geoposition containing both Long and Lat
. 0x10 - Field is exact Word

. 0x20 - Field is exact String

. 0x80 - Field is Within string

. 0x100 - Mixed Alias

. 0x200 - Polygon

251

. 0x400 - Primary key set by Boolware Manager

. 0x800 - Foreign key set by Boolware Manager
. 0x1000 - Indexed alias field
NOTE!

The variable flags2 is always 0 if called Boolware server version is less than 2.6.0.49.

size
public int size
Maximum size of this column

type
public int type
ODBC coded data type.

primaryKeySequence
public int primaryKeySequence
If part of primary key, sequence number.

decimalCount
public int decimalCount
Number of decimals

Counter

extends java.lang.Object

Counter contains the actual values correlate to the counter type

Fields

counterType

public int counterType;
Identifier of the counter, see CounterType

counterName

public String counterName;
Literal name of the counter

accumulated

public double accumulated;
Number of times this counter is updated

itemValue

public CounterAttribute itemValue;
Accumulated values for the counter, see CounterAttribute

threadTimeValue

public CounterAttribute threadTimeValue;
Accumulated thread time values for the counter, See CounterAttribute

wallTimeValue
public CounterAttribute wallTimeValue;

252

Accumulated wall clock time values for the counter, see CounterAttribute

CounterAttribute

extends java.lang.Object

CounterAttribute contains the total accumulated value and the highest and lowest values.
It also contains a descriptive counter name

Fields

counterName

public String counterName;
Name of the counter

accumulated

public double accumulated;

The accumulated value for the counter

Depending on the counter type this value contains:

counter type is ct. XMLREQUESTS - number of xml performed requests
counter type is ct. BOOLEANQUERIES - number of hits for boolean queries
counter type is ct_ SIMQUERIES - number of hits for similarity queries
counter type is ct. DATAFETCH - number of tuples fetched

counter type is ct_INDEXTERMS - number of index terms fetched

counter type is ct_ SORTINGS - number of tuples sorted

maxValue

public double maxValue;
The maximum value for the counter

minValue

public double minValue;
The minimum value of the counter

CounterTypes

extends java.lang.Object

Performance counter types is the content of the Counter.counterType field.

Fields

ct_UNKNOWN

public final static int ct_ UNKNOWN = -1;
Counter is not initiated

253

ct_XMLREQUESTS

public final static int ct. XMLREQUESTS = 0;
Counter is XML request counter containing number of handled SofboolXML_request

ct_ BOOLEANQUERIES

public final static int ct. BOOLEANQUERIES = 1;
Counter is the boolean query counter containing number of boolean queries

ct_SIMQUERIES

public final static int ct_ SIMQUERIES = 2;
Counter is the similarity counter containing number of similarity queries

ct_DATAFETCH

public final static int ct. DATAFETCH = 3;
counter is the data fetch counter containing number of data fetches

ct_INDEXTERMS

public final static int ct_INDEXTERMS = 4;
Counter is the index term counter containing number of index term fetches

ct_SORTINGS

public final static int ct SORTINGS = 5;
Counter is the sort counter containing number of sortings performed

ct_MAXTYPES

public final static int ct. MAXTYPES = 6;
Maximum counter type value

DBInfo

extends java.lang.Object

Holds meta-data information about one database. Returned from Client.getDatabaselnfo().

Fields

name
public java.lang.String name

Database name

remark

public java.lang.String remark
Boolware remark

dsn

public java.lang.String dsn
Database DSN, Data Source Name

History

extends java.lang.Object

Contains one query history item. Returned from Client.getHistory().

254

Fields

text
public java.lang.String text
This is the query expression used

count
public int count
Number of records found, when combined with previous search

intermediateCount
public int intermediateCount
Number of records found, just for this subquery

IndexWord

extends java.lang.Object

Holds information about one index term. Returned from Client.getindexWord().

Fields

hitCountZoomed
public int hitCountZoomed
Frequency, if zoomed (just terms that exist in current search result)

hitCount
public int hitCount
Number of records that contains this term in the whole database

termNo

public int termNo
Internal term no.

text

public java.lang.String text
The keyword string

255

PerfCounters

extends java.lang.Object

Holds all performance counters received from Boolware server

Fields

numCounters

public int numCounters;
Number of counters stored in counters and timerCounters

srvVersion

public String srvVersion;
Version of the connected Boolware server

srvStarted

public int srvStarted;
Server start in seconds since 1970 01 01 00:00:00

totSessions

public int totSessions;
Total number of sessions connected to the Boolware server

numSessions

public int numSessions;
Number of session connected just now to the Boolware server

peakSessions

public int peakSessions;
Highest number of session connected at a time

execSessions

public int execSessions;
Number of executing sessions just now in Boolware server

peakexecSessions

public int peakexecSessions;
Number of the highest executing sessions at a time

errors

public int errors;
Error reported by Boolware server

timerStart

public int timerStart;
time for the last reset of counters in the server in seconds since 1970 01 01 00:00:00

timerElapsed

public int timerElapsed;
Seconds past since timerStart was reset

numCommands
public long numCommands;

256

Number of commands performed by the Boolware server

counters

public Counter [] counters;
Array of Counter classes each holding respectively counter values see class Counter

timerCounters

public ElapsedTimeCounter [] timerCounters;
Array of ElapsedTimeCounter class each holding respectively elapsed time value

Response

extends java.lang.Object

Contains a reply from a Boolware command. Is returned from Client.execute(String cmd).

Fields

string
public int string
Response string. Should be interpreted differently depending on the current command.

intl
public int intl
First integer respons. Should be interpreted differently depending on the current command.

int2
public int int2
Second integer response. Should be interpreted differently depending on the current command.

Statistics

extends java.lang.Object

Contains statistics computed for one column. Returned from Client.computeStatistics().

Fields

count

public int count
Number of records with values

modeCount

public int modeCount
Frequency of the most common value

mode
public double mode

257

The most common value

sum
public double sum
Sum of all values

avg
public double avg
Arithmetic average

min
public double min
Lowest value found

max
public double max
Highest value found

stddev

public double stddev
Standard deviation

variance
public double wariance
Variance

median

public double median
Median value

upper
public double upper
Upper tile (tertial, quartile, quintile etc)

lower

public double lower
Lower tile (see also upper)

Settings
extends java.lang.Object

Holds session settings. Returned from Client.getSettings().

Fields

sessionID
public java.lang.String sessionID
This session’s unique 1D

database
public java.lang.String database

258

The currently attached database

table
public java.lang.String table
The last used Table.

autoTruncation
public boolean autoTruncation
True if automatic query term right truncation is performed by Boolware

proxGap
public int proxGap
Maximum distance between words, for proximity (Near) searches

proxOrder

public boolean proxOrder
True if order of the terms are important (proximity search)

vsmThreshold

public double wsmThreshold
Lowest acceptable score for similarity searches

hitCount
public int hitCount
Number of records from the current query.

Tablelnfo

extends java.lang.Object

Holds meta-data information about one table. Returned from Client.getTablelnfo().

Fields

name

public java.lang.String name
Table name

flags

public int flags

Boolware Table flags. Bits are:

. 0x1 - Table is indexed by Boolware
. 0x70000000 - Table status bits

hitCount
public int hitCount
Number of found tuples in current search result

recordCount

public int recordCount
Total number of tuples in this table (may be -1 if unknown).

259

Methods

Indexed
public boolean Indexed ()
Indicates if this table is indexed by Boolware.

Status
public int Status()
Returns this table’s status. Possible states are:

. 0 - online

. 1 - loading

. 2 - offline

. 3 - pending

. 4 - read only
Tuple

extends java.lang.Object

Holds a single tuple, as read from the data source. Returned from Client.fetchTuples().

Fields

docNo

public int docNo
Boolware record ID

score

public float score
Score found, when using any rank mode

columns
public Column[] columns
The columns

260

Chapter 7
.NET client

This chapter describes how to use the Boolware .NET client to create applications.

General

The Boolware .NET client is an implementation of the Boolware client library for C# and other
.NET languages and distributed as a "Managed Assembly". There are different versions of the
Boolware .NET client that targets different versions of .NET.

The following versions of the Boolware .NET client are currently available:

e Boolware .NET Framework 2.0
e Boolware .NET Framework 4.5
e Boolware .NET Standard 2.0

The Boolware clients developed with .NET Framework 4.5 and .NET Standard 2.0 are
functionally equivalent and contain the same APIs. These Boolware clients take advantage of
more recent additions in .NET languages such as the async and await keywords, to support
asynchronous 1/O.

The Boolware .NET clients are contained in the namespace "Boolware". Create an instance of
the Boolware.Client class, and then use the members in this class to search, retrieve rows and
configure etc.

The client communicates with the Boolware server using the character encoding UTF-8, which
means that all XML/JSON calls made must have the "encoding" attribute set to UTF-8.

NOTE: Methods marked with * (asterisk) are not available in Boolware .NET Framework 2.0

Client

This is the Boolware client class. Create an instance of this class, connect it with a Boolware
server and then use the methods of this class to query the database, fetch tuples etc.

Methods

Attach

public int Attach(string dsn)
public async Task<int> AttachAsync (string dsn) *
Attaches to a database (makes it current).

Parameters:
dsn —the DSN (Data Source Name) of the desired database.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

261

ComputeStatistics

public Statistics ComputeStatistics(string table,
string column,
int tileCount)

public async Task<Statistics> ComputeStatisticsAsync(string table,
string column,
int tileCount) *

Computes statics for a given column, based on the current search result. The parameter

tileCount determines the number of percentiles you want. This value must be between 3 and 8.

To get all limit values for a specified group you should use the Execute or ExecuteXML. The
command statistics for Execute is described in Chapter 1 section "Execute commands in
Boolware".

Parameters:

table — the desired table.

column - the column to compute statistics for.
tileCount — 3 for tertials, 4 for quartiles etc.

Returns:
An object of type Statistics or null on error.

Connect

public int Connect (string server,
string sessionlId,
string reserved)

public async Task<int> ConnectAsync(string hostName,
string sessionlId,

string reserved) *
Connects this client with a Boolware server.

Parameters:

server — the name or IP address of the server.

sessionld — the session ID to use. If empty, Boolware will create a unique session ID which
can be read using the method GetSettings().

reserved — forfuture use; pass empty string

Returns:
Zero on success; otherwise a negative error code or a positive warning code.

CreateCalcColumn

public int CreateCalcColumn(string table,
string column,
string formula)

public async Task<int> CreateCalcColumnAsync(string table,

string column,

string formula) *

Creates a calculated column.

262

Parameters:

table — the name of the table in which column should be added.
Column - the name of the new column.

formula - the mathematical expression that forms the column value.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

Detach

public int Detach()

public async Task<int> DetachAsync() *

Detaches from a database.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

Disconnect

public int Disconnect (bool logout)

public async Task<int> DisconnectAsync (bool logout) *
Disconnects the network connection with the Boolware server.

Parameters:
logout - logs out the session if true; otherwise just disconnects.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

Execute

public Response Execute(string cmd)

public async Task<Response> ExecuteAsync (string cmd) *

Executes a command at Boolware.

public Response Execute(string server,
string sessionId,
bool stateless,
string cmd)

public async Task<Response> ExecuteAsynv(string server,
string sessionId,
bool stateless,
string cmd) *
Automatically connects to a Boolware server server and execute a command.

Server is the name or IP-address to the Boolware server.

263

If sessionld is an empty string Boolware will automatically generate a session id, else the
specified sessionld will be used.

If stateless is set to true then Boolware server will automatically disconnect the connection. If
stateless is set to false then the connection will not be disconnected but the session will
continue to exist on the Boolware server until the function disconnect(true) is called or until the
session has timed out due to inactivity.

Cmd is the command to execute.

This is examples of commands that could be used in this method: TABLES, RELATE, FIND,
AND, OR, NOT and XOR; BACK and FORWARD; SET and GET session settings, SAVE,
REVIEW and DELETE saved sets/saved queries/saved result and the RELATE command (join).

If you want to query more than one table: TABLES(tablel, table2, table3...) FIND "column
name":query terms.

If you want to perform a related search: RELATE("target table") FIND "search table"."column
name":query terms

Use GetHitCount("table name") to inspect number of matching records for the specified table,
when this method returns zero (success).

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Returns:
A Response object. See description on Response below in this chapter.
null on error.

ExecuteStream *

public Response ExecuteStream(Stream stream) *

public async Task<Response> ExecuteStreamAsync (Stream stream) *

Executes a command at Boolware.

public Response ExecuteStream(string server,
string sessionlId,

bool stateless,

Stream stream) *

public async Task<Response> ExecuteStreamAsync (string server,
string sessionlId,

bool stateless,

Stream stream) *

Makes a connection to the specified Boolware Server and execute the specified command
against the Boolware server.

Server is the name or IP-address to the Boolware server.

If sessionld is an empty string Boolware will automatically generate a session id, else the
specified sessionld will be used.

If stateless is set to true then Boolware server will automatically disconnect the connection. If
stateless is set to false then the connection will not be disconnected but the session will

264

https://msdn.microsoft.com/en-us/library/system.net.http.httpresponsemessage%28v=vs.118%29.aspx
https://msdn.microsoft.com/en-us/library/dd321424%28v=vs.118%29.aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httpresponsemessage%28v=vs.118%29.aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httpresponsemessage%28v=vs.118%29.aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httpresponsemessage%28v=vs.118%29.aspx

continue to exist on the Boolware server until the function disconnect(true) is called or until the
session has timed out due to inactivity.

Stream is the stream that contains the command to execute. Data in the stream must be in
UTF-8 format.

This is examples of commands that could be used in this method: TABLES, RELATE, FIND,
AND, OR, NOT and XOR; BACK and FORWARD; SET and GET session settings, SAVE,
REVIEW and DELETE saved sets/saved queries/saved result and the RELATE command (join).

If you want to query more than one table: TABLES(tablel, table2, table3...) FIND "column
name":query terms.

If you want to perform a related search: RELATE("target table") FIND "search table"."column
name":query terms

Use GetHitCount("table name") to inspect number of matching records for the specified table,
when this method returns zero (success).

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Returns:
A Response object. See description on Response below in this chapter.
null on error.

Note:

There is only one response stream for each instance of the Boolware.Client. The response
stream is therefor only valid until the next call to the Boolware server. The data in the response
stream is UTF-8 encoded.

ExecuteXML

public string ExecuteXML (string server,
string sessionlId,
bool stateless,
string request)

public async Task<string> ExecuteXMLAsync (string server,
string sessionlId,

bool stateless,

string request) *

Connects to a Boolware server and sends a request in XML format and returns a response in
XML format.

If sessionld is an empty string Boolware will automatically generate a session id, else the
specified sessionld will be used.

If stateless is set to true then Boolware server will automatically disconnect the connection. If
stateless is set to false then the connection will not be disconnected but the session will
continue to exist on the Boolware server until the function disconnect(true) is called or until the
session has timed out due to inactivity.

Parameters:

server — a computer name or an IP address to Boolware server.
sessionld - the session id.

stateless — should be set to true or false.

request —the XML request.

265

Return:
A response formatted as an XML document

public int ExecuteXML(string server,
string sessionId,
string request)

public async Task<int> ExecuteXMLAsync (string server,

string sessionId,

string request) *

Connects to a Boolware server and sends a request in XML format.
To fetch the retrieved data the method FetchTuples should be used.

If sessionld is an empty string Boolware will automatically generate a session id, else the
specified sessionld will be used.

Parameters:

server — a computer name or an IP address to Boolware server.
sessionld - the session id.

request —the XML request.

Returns:

zero on success; otherwise a negative error code or a positive warning code.
public string ExecuteXML (string request)

public async Task<string> ExecuteXMLAsync (string request) *

Executes an XML request at Boolware and returns its an XML response.

Parameters:
request — the XML request.

Returns:
A response, as an XML document.

ExecuteXMLByteResponse

public byte[] ExecuteXMLByteResponse (string request)

public async Task<byte[]> ExecuteXMLByteResponseAsync (string request) *

Executes an XML request at Boolware and returns its response in a byte array.

Parameters:
request — the XML request.

Returns:
A response, as an XML document in a byte array.

266

ExecuteXMLNoResponse

public int ExecuteXMLNoResponse (string request)

public async Task<int> ExecuteXMLNoResponseAsync (string request) *

Perform an XML request against a connected Boolware server without formatting and returning
an XML document

To fetch the retrieved data the method FetchTuples should be used.

Parameters:
request — the XML request

Returns:
zero on success; otherwise a negative error code or a positive warning code.

FetchTuples

public Tuple[] FetchTuples(string table,
string columns,
int hitNo,
int blockSize,
int maxSize)

public async Task<Tuple[]> FetchTuplesAsync(string table,
string columns,
int hitNo,
int blockSize,

int maxSize) *

Reads rows from database. This method can read both common standard columns and XML
fields.

Parameters:

table — the desired table.

columns - the columns/elements to fetch.

hitNo — the requested record index, starting from zero.

blockSize — number of records to fetch.
maxSize — maximum size of any column (zero means no limit).

Returns:
an array of Tuple objects.
null on error.

FetchVectors

public Tuple[] FetchVectors(string table,
int vector,
int content,
int hitNo,
int blockSize)

public async Task<Tuple[]> FetchVectorsAsync(string table,
int vector,
int content,
int hitNo,

int blockSize) *

267

Reads exported record vectors, in binary or text format.

Parameters:

table — the desired table.

vector — controls which vector is fetched, Query(1) or Record (2).
content — controls if terms are plain test (1) or coded (2).

hitNo — the requested record index, starting from zero.

blockSize — number of records to fetch.
Returns:

an array of Tuple objects.
null on error.

GetColumninfo

public ColumnInfo GetColumnInfo(string table, int columnNo)
public async Task<ColumnInfo> GetColumnInfoAsync (string table, int columnNo) *
Returns info about a column.

Parameters:

table — the table name in the currently attached database.
columnNo — column index.

Returns:

Columninfo object.
null on error.

GetColumninfoEx

public ColumnInfoEx GetColumnInfoEx (string table, int columnNo)

public async Task<ColumnInfoEx> GetColumnInfoExAsync(string table,
int columnNo)

*
Returns extended info about a column.

Parameters:

table — the table name in the currently attached database.

columnNo - column index.

Returns:

ColumninfoEx object.
null on error.

GetDatabaselnfo

public DBInfo GetDatabaseInfo (int dbNo)
public async Task<DBInfo> GetDatabaseInfoAsync (int dbNo) *

Returns meta-data information about a database.

268

Parameters:
dbNo - database index, starting from zero.

Returns:

DBInfo object.
null on error.

GetErrorCode

public int GetErrorCode ()

Returns:
last error code.

GetErrorMessage

public string GetErrorMessage ()

Returns:
last error message.

GetHistory

public History[] GetHistory(string table)

public async Task<History[]> GetHistoryAsync(string table) *
Gets query history items.

Parameters:
table — the table that search history is retrieved for.

Returns:

an array of History() items.
null on error.

GetHitCount
public int GetHitCount (string table)
Returns current hit count (number of found records) for the specified Table.

Parameters:
table - the table name.

GetlndexWord

public IndexWord[] GetIndexWord(string table,
string column,
int zoomed,

269

int type,
int count,
string seed)

public async Task<IndexWord[]> GetIndexWordAsync(string table,
string column,
int zoomed,
int type,
int count,

string seed) *

Returns an array of sorted indexed terms (searchable keywords).

Parameters:

table — the desired table.

column - the desired column. Special columns $pk, $vsm, $freetext and $category may be
used. NOTE As these columns contain a special character ($), they have to be
enclosed within quotes (") or brackets ([]).

zoomed — true if only to include words that are part of the current result.

type — the desired type of terms. A list of type can be found in chapter "Execute
commands in Boolware" and command "indexex".

count — desired number of words to read.

seed — where Boolware should start listing terms (term, term number or index type).

The parameter 'column' could have more information: type of presentation and order. There are
two different types of presentation: term (default) when the terms should be presented in
alphabetical order and count when the terms should be presented in frequency order (number
of occurrences). There are to sort orders: asc and desc. If no sort order is specified ascending
will be used.

The parameter seed could have a special sub-command searchterms which indicates that you
want to get statistics on query terms used when query Boolware during a certain time interval.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms".

Returns:
an array of IndexWord objects.
null on error.

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

GetindexWord?2

public IndexWord[] GetIndexWord2(string table,
string column,
int zoomed,
int type,
int count,
string seed,
int continuation)

public async Task<IndexWord[]> GetIndexWord2Async(string table,
string column,
int zoomed,
int type,

270

int count,
string seed,

int continuation) *

Returns an array of sorted indexed terms (searchable keywords).

Parameters:

table — the desired table.

column — the desired column. Special columns $pk, $vsm, $freetext and $category may
be used. NOTE As these columns contain a special character ($), they have
to be enclosed within quotes (") or brackets ([]).

zoomed — true if only to include words that are part of the current result.

type — the desired type of terms (same as GetindexWord)

count — desired number of words to read.

seed — where Boolware should start listing terms (term, term number or index type).

continuation

if false the seed parameter will be used else continuation from last term.

The parameter 'column’ could have more information: type of presentation and order. There are
two different types of presentation: term (default) when the terms should be presented in
alphabetical order and count when the terms should be presented in frequency order (number
of occurrences). There are to sort orders: asc and desc. If no sort order is specified ascending
will be used.

The parameter seed could have a special sub-command searchterms which indicates that you
want to get statistics on query terms used when query Boolware during a certain time interval.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms".

Example:

This is an example how to get a grouped index hierarchical presented ordered by occurrences
(type = 10). In table ‘Person’ there is a column ‘Date’ which is grouped indexed. The date is
stored in the following notation: yyyymmdd and grouped: 4, 6, 8.

The terms should be fetched from the entire table (zoom = 0). The type is 10 and the requested
number of terms 10. The empty string means that the fetch should start from the beginning of
the index.

The command is as follows:

GetIndexWord2 ("Person", "Date", 0, 10, 10, "", 0)

The fetched terms are return as an array of object type IndexWord:

hitCountZoomed hitCount termNo text
14837 14837 0 1945
1318 1318 0 194503
60 60 0 19450321
52 52 0 19450310
48 48 0 19450327
47 47 0 19450314
32 32 0 19450331
32 32 0 19450319
25 25 0 19450307
12 12 0 19450303

When the parameter ‘zoom’ is inactive the hitCountZoomed and hitCount will be the same.
The element termNo always returns 0 in this version of Boolware.

271

If you want to continue and fetch the next 10 terms you just have to activate the parameter
‘continuation’.

GetIndexWord2 ("Person", "Date", 0, 10, 10, "", 1)

The fetched terms are return as an array of object type IndexWord:

hitCountZoomed hitCount termNo text
11 11 0 19450301
11 11 0 19450311
10 10 0 19450317
9 9 0 19450313
9 9 0 19450308
9 9 0 19450316
8 8 0 19450302
8 8 0 19450322
7 7 0 19450324
7 7 0 19450304

Returns:

an array of IndexWord objects.

null on error.

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

GetKeyValue

public string GetKeyValue(string table,
string column,
int hitNo)

public async Task<string> GetKeyValueAsync (string table,
string column,
int hitNo) *
Reads a primary or foreign key value.

Parameters:

table - the desired table.

column — the desired column (must be primary or foreign key).
hitNo — the hit number, starting from zero.

Returns:
the requested value.

GetNumberColumns
public int GetNumberColumns (string table)
*

public async Task<int> GetNumberColumnsAsync (string table)

Returns number of columns.

272

Parameters:
table - the desired table.

GetNumberDatabases

public int GetNumberDatabases ()
public async Task<int> GetNumberDatabasesAsync () *
Returns number of databases.

Returns:
number of databases.

GetNumberTables

public int GetNumberTables ()
public async Task<int> GetNumberTablesAsync() *

Returns number of tables.

GetPerfCounters

Note! This function is deprecated, please use the execute command perfcounters instead.
Read more in chapter 1 "Execute commands in Boolware".

public PerfCounters GetPerfCounters ()
public async Task<PerfCounters> GetPerfCountersAsync() *
Returns all performance counters

Tips! Check out the Boolware Manager on the "Performance”-tab to see content of all the
counters.

GetQueryTime
public float GetQueryTime ()

Returns time taken for last query.

GetRankMode
public int GetRankMode (string table)
*

public async Task<int> GetRankModeAsync (string table)

Returns the current rank mode.

273

Parameters:
table - the desired table.

Returns:

current rankmode

« BNORANK

« BOCCRANK

« BFREQRANK

« BSIMRANK

* BSORTRANK

* BSORTDRANK

* BWEIGHTOCCRANK
* BWEIGHTFREQRANK
+ BEACHTERMOCCRANK
* BCUSTOMRANK

* BFUZZYRANK

No ranking
Rank by occurrence
Rank by frequency
Rank by similarity
Rank by sort (Ascending)
Rank by sort (Descending)
Rank by weighted occurrence
Rank by weighted frequency
Rank on specified Term
Rank by Custom

0 Rank by fuzzy

POoO~NOUWNEO

GetSettings

public Settings GetSettings()

public async Task<Settings> GetSettingsAsync() *
Gets session settings.

Returns:

a Settings() object.
null on error.

GetSettings XML

public string GetSettingsXML ()
public async Task<string> GetSettingsXMLAsync() *
Gets session settings as XML.

Returns:
settings as an XML document.

GetTablelnfo

public TableInfo GetTableInfo (int tableNo)

public TableInfo GetTableInfo(string tableName)

public async Task<TableInfo> GetTableInfoAsync (int tableNo) *
public async Task<TableInfo> GetTableInfoAsync (string tableName) *
Returns information about a table.

Parameters:
tableNo - table index, starting from zero.

274

tablename — name of a table
Returns:

Tablelnfo object.
null on error.

GetVersion

public string GetVersion ()

public async Task<string> GetVersionAsync() *

Returns the Boolware Server version followed by the Boolware .NET Client version separated
by a CR/LF.

Returns:

A string containing the Boolware Server version followed by the Boolware .NET Client version
separated by a CR/LF.

GetClientVersion

public string GetClientVersion ()
Returns the version of the Boolware .NET Client.

Returns:
A string containing the version of the Boolware .NET Client.

QueryTable

public int QueryTable(string table, string cmd)

public async Task<int> QueryTableAsync (string table, string cmd) *

Executes a query at Boolware.

This method could only be used for the boolean commands: FIND, AND, OR, NOT and XOR
and the browse commands BACK and FORWARD. The method is used when you query one
table.

Use GetHitCount() to inspect number of matching records when this method returns zero
(success).

Returns:
zero on success; otherwise a negative error code or a positive warning code.

ReconnectIfExists

public int ReconnectIfExists(string server,
string sessionId,
string reserved)

275

public async Task<int> ReconnectIfExistsAsync(string server,

string sessionId,

string reserved) *

Connect the current session to Boolware server on requested computer.

Parameters:

server — server name or |P address, to the Boolware server.
sessionld - the session id.

reserved - for futer use apply empty string.

Boolware Server must be running on a computer in the network, which can be reached by the
Boolware client before the connection can take place.

The parameter ‘server’ should be the name of the computer in the network or its IP-address; for
example 192.168.0.1.

Returns:
zero if everything went ok, else a negative error code or a positive warning code.

RemoveCalcColumn

public int RemoveCalcColumn (string table, string column)

public async Task<int> RemoveCalcColumnAsync (string table, string column) *

Removes a calculated column.

Parameters:
table - the table that contains the column to be removed.
column — the name of the column to remove.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

SetRankMode

public int SetRankMode (string table, int rankMode)

public async Task<int> SetRankModeAsync (string table, int rankMode) *

Sets the new rank mode, returning the previous or a return code.

NOTE a Query will reset the rank mode to BNORANK except when it is a similarity query
(BSIMRANK) or a query on weight search terms (BWEIGHTFREQRANK).

Parameters:
table — the desired table.
rankmode - the new desired rank mode.
*+ BNORANK 0 No ranking
*+ BOCCRANK 1 Rank by occurrence

*+ BFREQRANK 2 Rank by frequency

* BSIMRANK 3 Rank by similarity

* BSORTRANK 4 Rank by sort (Ascending)

*+ BSORTDRANK 5 Rank by sort (Descending)

* BWEIGHTOCCRANK 6 Rank by weighted occurrence

276

BWEIGHTFREQRANK 7 Rank by weighted frequency
BEACHTERMOCCRANK 8 Rank on specified Term

¢ BCUSTOMRANK 9 Rank by Custom
« BFUZZYRANK 10 Rank by fuzzy
Returns:

the previous rank mode or an error code.

SetSettings

public int SetSettings (Settings settings)

public async Task<int> SetSettingsAsync(Settings settings) *
Sets session settings.

Parameters:
settings — the new settings.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

SetSettingsXML

public int SetSettingsXML (string xml)

public async Task<int> SetSettingsXMLAsync (string xml) *
Sets session settings as XML.

Parameters:
xml — the new settings.

Returns:
zero on success; otherwise a negative error code or a positive warning code.

SortResult

public int SortResult(string table, string expression)

public async Task< int> SortResultAsync (string table, string expression) *
Sorts the current search result. The sort will be performed on the contents of the specified
columns. You could also set the sort order; ascending (ASC) or descending (DESC). If no data
in a sort column you could control if it should be "sorted" first or last by the parameter
emptydata=first/last. If the first sort column it is indexed as string or numeric you could specify
the number of records to sort. The number is specified after order (columnl desc:100).

Parameters:
table — the desired table.
expression — the desired column(s) separated by comma (,)

expression syntax:

277

<colname> [asc/desc[:nn]] [emptydata='first/last'] [sortalias='coll, col2'] [,]

where:

colname the column name to perform the sort on.
optional:

asc/desc ascending or descending; default is ascending
‘nn sort the nn first at each sort request

emptydata first/last set fictive sort order if no data in column
first indicates that the empty value will be treated as sort value ascii 0
last indicates that the empty value will be treated as sort value ascii 255 default is
last

sortalias upon empty data in colname use another column to collect data that will be used
for sorting.
Up to 5 sortalias columns, comma separated, can be given i.e. if coll is empty try
next specified column col2 etc.
If column name needs quotation marks make sure to double quote if using the
same quotation mark as around the whole sortalias expression. E.g.
sortalias=""Col 1", "Col 2""
sortalias="'Col 1', 'Col 2"'"

, separates multiple sort columns

Example 1: The result after a Query is 60.000 articles and you want to sort on the type of
publication in ascending order and the publication date in descending order (the newest article
first). If no data in the column PubDate these records will be "sorted" first.

SortResult ("Articles", "Publication asc, PubDate desc emptydata=first")
Example 2: The result after a Query is 60.000 articles and you want to sort on the publication
date in descending order (the newest article first). You only want to present the first 25 articles.
Publication date must be indexed as string.

SortResult ("Articles", "PubDate desc:25")

For a deeper description and more examples see Chapter 2 "API description" section BCSort()
above.

Column
Contains one column value, as read from the underlying data source. Part of Tuple.

Fields

name

public string name
The name of this column

type
public int type
The data type of this column, ODBC coded

fetchSize

public int fetchSize
Fetch size

width

public int width
The maximum width of this column

278

length

public int length
The actual length of this value

value

public string value
The data value, may be null and may also include null

bytes
public byte[] bytes
The column value (if it's a BLOB column). May be null.

Columninfo
Holds meta-data information about one column. Returned from Client.GetColumninfo().
Fields

name

public string name
Column name

flags
public int flags
Boolware indexing flags. Values are:

. 0x1 - String indexing

. 0x2 - Word indexing

. 0x4 - Phonetic words

. 0x8 - Proximity search

. 0x10 - Similarity search

. 0x20 - Left truncated search

. 0x40 - Proximity within line

. 0x80 - Normalize string (compress)
. 0x100 - Word permutations

. 0x200 - Stemmed words

. 0x400 - Grouped keys (fast interval)
. 0x800 - Rankable column

. 0x1000 - Categorization field

. 0x10000 - Index with field ID

. 0x20000 - Table global free text index

. 0x40000 - Non indexed alias field

. 0x100000 - Field contains markup elements
. 0x200000 - Field uses stop words

. 0x400000 - Field indexed wit Within

. 0x1000000 - Foreign key

. 0x2000000 - XML content column

. 0x4000000 - XML subfield (part of XML content column)
. 0x8000000 - Computed (virtual) column

. 0x10000000 - Case sensitive

. 0x40000000 - Memory mapped

size
public int size
Maximum size of this column

type

public int type
ODBC coded data type.

279

primaryKeySequence
public int primaryKeySequence
If part of primary key, sequence number. The first sequence number is one (1).

decimalCount
public int decimalCount
Number of decimals

ColumninfoEx
Holds meta-data information about one column. Returned from Client.GetColumninfoEx().
Fields

name

public string name
Column name

flags
public int flags
Boolware indexing flags. Values are:

. Ox1 - String indexing

. 0x2 - Word indexing

. 0x4 - Phonetic words

. 0x8 - Proximity search

. 0x10 - Similarity search

. 0x20 - Left truncated search

. 0x40 - Proximity within line

. 0x80 - Normalize string (compress)
. 0x100 - Word permutations

. 0x200 - Stemmed words

. 0x400 - Grouped keys (fast interval)
. 0x800 - Rank able column

. 0x1000 - Categorization field

. 0x10000 - Index with field ID

. 0x20000 - Table global free text index

. 0x40000 - Non indexed alias field

. 0x100000 - Field contains markup elements
. 0x200000 - Field uses stop words

. 0x400000 - Field indexed wit Within

. 0x1000000 - Foreign key

. 0x2000000 - XML content column

. 0x4000000 - XML subfield (part of XML content column)
. 0x8000000 - Computed (virtual) column

. 0x10000000 - Case sensitive

. 0x40000000 - Memory mapped

flags2

public int flags2
Boolware indexing flags. Values are:

. 0x1 - Geoposition Lat or Long in WGS84 forma

. 0x2 - Geoposition in metric e.g. RT90

. 0x4 - Geoposition field containing both lat and long
. 0x10 - Field is exact Word

. 0x20 - Field is exact String

. 0x80 - Field is Within string

. 0x100 - Mixed Alias

. 0x200 - Polygon

280

. 0x400 - Primary key set by Boolware Manager

. 0x800 - Foreign key set by Boolware Manager
. 0x1000 - Indexed alias field
NOTE!

The variable flags2 is always O if called Boolware server version is less than 2.6.0.49

size
public int size
Maximum size of this column

type
public int type
ODBC coded data type.

primaryKeySequence
public int primaryKeySequence
If part of primary key, sequence number.

decimalCount

public int decimalCount
Number of decimals

Counter
Counter contains the actual values correlate to the counter type
Fields

counterType

public int counterType;
Identifier of the counter, see CounterType

counterName

public String counterName;
Literal name of the counter

accumulated

public double accumulated;
Number of times this counter is updated

itemValue

public CounterAttribute itemValue;
Accumulated values for the counter, see CounterAttribute

threadTimeValue

public CounterAttribute threadTimeValue;
Accumulated thread time values for the counter, See CounterAttribute

wallTimeValue

public CounterAttribute wallTimeValue;
Accumulated wall clock time values for the counter, see CounterAttribute

CounterAttribute

CounterAttribute contains the total accumulated value and the highest and lowest values.

281

It also contains a descriptive counter name
Fields

counterName

public String counterName;
Name of the counter

accumulated

public double accumulated;

The accumulated value for the counter

Depending on the counter type this value contains:

counter type is ct. XMLREQUESTS - number of xml performed requests
counter type is ct. BOOLEANQUERIES - number of hits for boolean queries
counter type is ct_ SIMQUERIES - number of hits for similarity queries
counter type is ct. DATAFETCH - number of tuples fetched

counter type is ct_INDEXTERMS - number of index terms fetched

counter type is ct_ SORTINGS - number of tuples sorted

maxValue

public double maxValue;
The maximum value for the counter

minValue

public double minValue;
The minimum value of the counter

CounterTypes
Performance counter types is the content of the Counter.counterType field.
Fields
ct_UNKNOWN
public final static int ct UNKNOWN = -1;

Counter is not initiated

ct_ XMLREQUESTS

public final static int ct XMLREQUESTS = 0;
Counter is XML request counter containing number of handled SofboolXML_request

ct_ BOOLEANQUERIES

public final static int ct BOOLEANQUERIES = 1;
Counter is the boolean query counter containing number of boolean queries

ct_SIMQUERIES
public final static int ct SIMQUERIES = 2;
Counter is the similarity counter containing number of similarity queries

ct_DATAFETCH
public final static int ct DATAFETCH = 3;
counter is the data fetch counter containing number of data fetches

ct_INDEXTERMS

public final static int ct INDEXTERMS = 4;
Counter is the index term counter containing number of index term fetches

282

ct_SORTINGS

public final static int ct SORTINGS = 5;
Counter is the sort counter containing number of sortings performed

ct_ MAXTYPES
public final static int ct MAXTYPES = 6;
Maximum counter type value

DBInfo

Holds meta-data information about one database. Returned from Client.GetDatabaselnfo().
Fields

name

public string name
Database name

remark
public string remark
Boolware remark

dsn
public string dsn
Database DSN, Data Source Name

History

Contains one query history item. Returned from Client.GetHistory().

Fields

text

public string text
This is the query expression used

count

public int count
Number of records found, when combined with previous search

intermediateCount

public int intermediateCount
Number of records found, just for this sub query

IndexWord

Holds information about one index term. Returned from Client.GetIndexWord().
Fields
hitCountZoomed

public int hitCountZoomed
Frequency, if zoomed (just terms that exist in current search result)

283

hitCount

public int hitCount
Number of records that contains this term in the whole database

termNo

public int termNo
Internal term no.

text
public string text
The keyword string

PerfCounters
Holds all performance counters received from Boolware server
Fields

numCounters

public int numCounters;
Number of counters stored in counters and timerCounters

srvVersion

public string srvVersion;
Version of the connected Boolware server

srvStarted

public int srvStarted;

Server start in seconds since 1970 01 01 00:00:00

totSessions

public int totSessions;
Total number of sessions connected to the Boolware server

numsSessions

public int numSessions;
Number of session connected just now to the Boolware server

peakSessions

public int peakSessions;
Highest number of session connected at a time

execSessions

public int execSessions;
Number of executing sessions just now in Boolware server

peakexecSessions

public int peakexecSessions;
Number of the highest executing sessions at a time

errors

public int errors;
Error reported by Boolware server

timerStart

public int timerStart;

284

time for the last reset of counters in the server in seconds since 1970 01 01 00:00:00

timerElapsed

public int timerElapsed;
Seconds past since timerStart was reset

numCommands

public long numCommands;
Number of commands performed by the Boolware server

counters

public Counter [] counters;
Array of Counter classes each holding respectively counter values see class Counter

timerCounters

public ElapsedTimeCounter [] timerCounters;
Array of ElapsedTimeCounter class each holding respectively elapsed time value

Response

Holds a Boolware command response. Returned from Client.Execute(string cmd).

Fields

String
public int String
Response string. Should be interpreted depending on the command used.

Intl

public int Intl
First integer response. Should be interpreted depending on the command used.

Int2

public int Int2
Second integer response. Should be interpreted depending on the command used.

Settings
Holds session settings. Returned from Client.GetSettings().

Fields

sessionID

public string sessionID
This session’s unique 1D

database

public string database
The currently attached database

table

public string table
The last used Table.

285

autoTruncation

public bool autoTruncation
True if automatic query term right truncation is performed by Boolware

proxGap
public int proxGap
Maximum distance between words, for proximity (Near) searches

proxOrder
public bool proxOrder
True if order of the terms are important (proximity search)

vsmThreshold
public double vsmThreshold
Lowest acceptable score for similarity searches

hitCount

public int hitCount
Number of records from the last query.

Statistics
Contains statistics computed for one column. Returned from Client. ComputeStatistics().

Fields

count

public int count
Number of records with values

modeCount

public int modeCount
Frequency of the most common value

mode

public double mode
The most common value

sum

public double sum
Sum of all values

avg
public double avg
Arithmetic average

min
public double min
Lowest value found

max

public double max
Highest value found

stddev
public double stddev

286

Standard deviation

variance

public double variance
Variance

median
public double median
Median value

upper
public double upper
Upper tile (tertial, quartile, quintile etc)

lower

public double lower
Lower tile (see also upper)

Tablelnfo

Holds meta-data information about one table. Returned from Client.GetTablelnfo().

Fields

name

public string name
Table name

flags

public int flags

Boolware Table flags. Bits are:

* 0x1 - Table is indexed by Boolware
* 0x70000000 - Table status bits

hitCount

public int hitCount
Number of found tuples in current search result

recordCount

public int recordCount
Total number of tuples in this table (may be -1 if unknown).

Methods

Indexed

public bool Indexed()

Indicates if this table is indexed by Boolware.
Status

public int Status/()

Returns this table’s status. Possible states are:
¢ 0-online

287

* 1-loading

« 2 -offline

* 3- pending
* 4 -read only

Tuple
Holds a single tuple, as read from the data source. Returned from Client.FetchTuples().

Fields

docNo

public int docNo
Boolware record ID

score

public float score
Score found, when using any rank mode

columns

public Column[] columns
The columns

288

Chapter 8
PHP extension

This chapter describes how to use the Boolware extension module for PHP to create
applications.

General

The Boolware extension module for PHP is distributed as php_boolware.dll (for Windows
platforms) and php_boolware.so (for Linux).

Regardless of platform, the extension module should be installed into the PHP extensions
directory (see ‘extension_dir’ in php.ini).

To have the Boolware extension loaded when PHP starts, specify extension=php_boolware.dll
(or .s0) in php.ini. If you do not do this, your scripts must begin with di("php_boolware.dlIl") to
make the Boolware extension available to PHP.

Boolware’s support for php is delivered as a dynamically linked library which means that php
must be authorized to load this library. SELinux, Security Enhanced Linux, must be configured
to permit this.

This is done in the configuration file for SELinux: /etc/selinux/config
The switch SELINUX should be set to "permissive"”, se example below.

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.

SELINUX=permissive

SELINUXTYPE= type of policy in use. Possible values are:

targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.

SELINUXTYPE=targeted

During development, you are encouraged to set ‘display_errors = On’ in php.ini. This will show
any error messages from Boolware in your HTML files. You should also use log_errors = On
and error_log = c:\temp\phperr.log to have errors logged.

php_boolware

Before anything else, connect with Boolware using $link = bw_connect(). The bw_connect
function takes two or three arguments, the server name and session name and a connect
timeout. It returns a connection link, which is expected back in all other Boolware functions.

289

Functions

bw_add_calc_column

integer bw_add_calc_column(resource connection, string table, string formula)

Adds a computed column to a table.

You can use formulas to derive new (virtual) columns that are calculated from the values of
other columns.

When fetching a row from the data source, computed columns can be included. If so, Boolware
will perform the arithmetic and return the calculated value.

Calculated columns can be explicitly removed using bw_drop_calc_column().

Parameters:

connection — the connection link, returned from bw_connect().
table — the desired table.

new_col —the name of the new, calculated column.
formula — the sort mode expression

Returns:

zero on success; otherwise a negative error code.

bw_compute_statistics

array bw_compute_statistics(resource connection, string table, string column, integer tiles)

Computes statistical info for a numeric column. The current search result determines which
records are part of the statistical set. Info about quartiles, quintiles etc. are part of the result (as
‘upper’ and ‘lower’.) The parameter ‘tiles’ control what will be returned, for example 4 for
quartiles, 5 for quintiles etc. In case of error, NULL is returned.

To get all limit values for a specified group you should use the bw_execute or

bw_executeXML. The command statistics for bw_execute is described in Chapter 1 section
"Execute commands in Boolware".

The result is returned as an array, containing the following entries:

avg - Arithmetic average value (sum / cnt)
count - Number of records with non-null values
lower - Lower tile

max - Highest found value

median - Median value

min - Lowest found value

mode - The most frequent value found
modeCount - Mode frequency

stddev - Standard deviance

sum - Sum of all values

upper - Upper tile

variance - Variance

290

bw_connect

resource bw_connect(string server, string session [,connecttimeout])

Connects with a Boolware server, using a specific session ID.

Parameters:
server - the name, or IP-address, of the computer that hosts Boolware.
session — desired session ID.

connecttimeout if supplied, set the max socket connect timeout in msec.

Returns:
A connection link on success; otherwise NULL.

Example:

<?php

// Connect to server "192.168.1.100" using session ID "My session"
$link = bw_connect("192.168.1.100", "My session");

?>

bw_connectexecute

resource bw_connectexecute(string server, string session, string encoding, bool stateless,
string cmd [,connecttimeout])

Executes a Boolware command with automatic connect to Boolware server, returning a
response string.

Parameters:

server — the name, or IP-address, of the computer that hosts Boolware.
session — desired session ID.

Encoding — desired session encoding, "utf-8" or "iso-8859-1"

Stateless —should be setto 1 or 0

Cmd — actual command

connecttimeout — if supplied, set the max socket connect timeout in msec.

If sessName is an empty string Boolware will automatically generate a session hame, else the
specified sessName will be used.

If encoding is set to the string "utf-8" the session will be set as a unicode session, otherwise it
will be a "ISO-8859-1" session

If stateless is 1 the session will be disconnected and logged out automatically by Boolware
server, else the session will stay alive until BCDisconnect has been called.

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Returns:
A response string depending on the actual command

bw_connectxml

string bw_ connectxml(string server,
string sessName,
bool stateless,
string request [, connecttimeout])

201

Performs an XML request with an automatic connection to Boolware server and return the reply
as an XML document.

If sessName is an empty string Boolware will automatically generate a session name, else the
specified sessName will be used.

If stateless is 1 the session will be disconnected and logged out automatically by Boolware
server, else the session will stay alive until BCDisconnect has been called.

Parameters:

server A computer name or an IP-address to Boolware server
sessName The name of the session

stateless Should be setto 1 or 0

request The XML request

connecttimeout If supplied, set the max socket connect timeout in msec.
Returns:

A response formatted as an XML document

bw_ connectxmlnoresponse

string bw__ connectxmlnoresponse(string server,

string sessName,

string request [, connecttimeout])
Performs an XML request with an automatic connection to Boolware server.

If sessName is an empty string Boolware will automatically generate a session hame, else the
specified sessName will be used.

To fetch the retrieved data the method bw_moveto should be used.

Parameters:

server A computer name or an IP-address to Boolware server
sessName The name of the session

request The XML request

connecttimeout If supplied, set the max socket connect timeout in msec.

Returns:
zero on success; otherwise a negative error code.

bw_databases

array bw_databases(resource connection, integer index)

Returns information about a database.

Parameters:

connection - the connection link, returned from bw_connect().
index — database index, starting from zero.

Returns:

The result is returned as an array, containing the following entries:
name — database name.

remark — descriptive remark

dsn — data source name, always unique.

status — database status, integer. See appendix 1.

292

bw_databases_count

integer bw_databases_count(resource connection)
Returns the number of databases registered with Boolware.

Parameters:
connection — the connection link, returned from bw_connect().

Returns:
Number of databases, or —1 in case of error.

bw_disconnect

integer bw_disconnect(resource connection, bool logout)

Disconnects from Boolware, optionally also logging out. Creating new sessions is expensive, so
if possible, it is recommended to not log out.

Parameters:

connection - the connection link, returned from bw_connect().

logout — FALSE to leave the session so it can be reconnected later.
Returns:

Zero on success; otherwise a negative error or positive warning.

Example:

<?php

// Disconnect current connection
bw_disconnect ($1ink, FALSE);

>

bw_drop_calc_column

integer bw_drop_calc_column(resource connection, string table, string column)

Removes a calculated column.

Parameters:

connection — the connection link, returned from bw_connect().
table — desired session ID.

column — the name of the calculated column to drop.
Returns:

zero on success; otherwise a negative error code.

bw_error

string bw_error(resource connection)

293

Returns the most recent error message from Boolware.

Parameters:
connection - the connection link, returned from bw_connect().

Returns:
The most recent error message.

Example:
<?php
// Open database, print error on failure
if ($bw _open($link, "db") != 0)
echo bw_error ($link);
?>

bw_execute

string bw_execute(resource connection, string cmd)

Executes a command string at Boolware, returning a response string.

Parameters:
connection — the connection link, returned from bw_connect().
cmd — the Boolware command string. See chapter 11 of the Operations guide for

detailed information about Boolware command strings.

Under section "Execute commands in Boolware" in chapter 1 above you will find a detailed
description of the commands that could be used in Execute.

Returns:
a response string.

Example:
<?php
// Save current search query

printf (bw_execute($link, "savequery name=’'MyQuery’ table=’MyTable’"));
>

bw_execute_xml

string bw_execute_xml(resource connection, string request)

Executes an XML request at Boolware, returning an XML response string.

Parameters:
connection — the connection link, returned from bw_connect().
request — the Boolware XML request. See chapter 3 of this book for detailed information

about Boolware XML request strings.

Returns:
an XML response string.

bw_execute_xml_noresponse

int bw_execute_xml_noresponse(resource connection, string request)

294

Performs an XML request with an automatic connection to Boolware server without formatting or
returning an XML document.

To fetch the retrieved data the method bw_moveto should be used.

Parameters:

connection — the connection link, returned from bw_connect().
request — The XML request

Returns:

zero on success; otherwise a negative error code.

bw_fetch_indexword

array bw_fetch_indexword(resource connection [, string table, string column, string seed [, int
zoom, int type]])

Lists index terms. The "seed" parameter determines from where to start the listing of terms.
Parameters:

Connection - the connection link, returned from bw_connect().

table - the desired table.

column - the column to list.

seed - from where to start (term, term number or index type).

zoom - zoom against current result.

type - index term type. A list of type can be found in chapter "Execute commands in

Boolware" and command "indexex".

The parameter 'column’' could have more information: type of presentation and order. There are
two different types of presentation: term (default) when the terms should be presented in
alphabetical order and count when the terms should be presented in frequency order (number
of occurrences). There are to sort orders: asc and desc. If no sort order is specified ascending
will be used.

The parameter seed could have a special sub-command searchterms which indicates that you
want to get statistics on query terms used when query Boolware during a certain time interval.

In the manual "Operations Guide" Chapter 11 "Interactive Query" you could read about
frequency index in section "View Frequency Index" and about Query term statistics in section
"Statistics on Query Terms".

Returns:
read term on success; otherwise NULL. The array contains the elements "count" and "value".

Example:
<?php
Sterm = bw_fetch indexword($link, table, column, "seed")
while (Sterm)
{

printf ("$d %$s\n", S$term["count"], Sterm["value"]);
Sterm = bw_fetch indexword($link);

}

7>

Important: After the function SubZoom was implemented all column names containing
parentheses must be enclosed within quotation marks. See also Operations Guide chapter 11
"Interactive Query" section "Hits projected hierarchically over one or multiple other values
(SubZoom)".

295

bw_fetch_keycol

string bw_fetch_keycol(resource connection, string table, string column, integer hitno)

Reads the value of one key column from the current tuple. "Key column" means either primary
key or foreign key column.

Parameters:

connection — the connection link, returned from bw_connect().

table — the desired table.

column — the column to read. This must be a primary or foreign key column.
hitno — the tuple to read. The first tuple is number zero.

Returns:

read value on success; otherwise NULL.

Example:

<?php

// Read all primary keys in current search result

for ($i = 0; $i < $bw_hitcount ($link, "mytable"); $i++)

{
// Read next primary key (the ID column)

Spk = bw_fetch keycol ($link, "mytable", "ID", $i);
}

?>

bw_fields

array bw_fields(resource connection, string table, integer index)

Returns information about a field.

Parameters:

connection —the connection link, returned from bw_connect().

table —the name of the desired table. The special name "@" can be used to get info
about fetched tuples (rather than a complete table).

index — field index, starting from zero.

Returns:

The result is returned as an array, containing the following entries:

name - database name.

type - data type

actualsize - actual size of the current field. (tuple only)

value - field value, as read from the database. (tuple only)

definedsize - defined size of the current field.

decimalcount - number of decimals for numeric fields.

flags - indexing flags, see appendix 1 — constants and records for
description.

primarykey - zero if not part of primary key, otherwise a sequence number.

flags2 - more index settings see Appendix 1

NOTE!

The flags2 element is always 0 if called Boolware server version is less than 2.6.0.49.

296

bw_fields_count

integer bw_fields_count(resource connection, string table)

Returns the number of fields in fetched rows, or in a table.

Parameters:

connection — the connection link, returned from bw_connect().
table — the table, or ‘@’ to target fetched tuples.
Returns:

Number of fields, or —1 in case of error.

bw_get perf_counters

array bw_get_perf_counters(resource connection)

Read all performance counters from Boolware server.
Tips! Check out the Boolware Manager on the "Performance”-tab to see content of all the
counters.

Parameters:
connection — the connection link, returned from bw_connect().

Returns:
The return value is an array, with the following content:

numCounters — number of counters.

srvVersion — Boolware server version.

srvStarted — start time in seconds since 1970-01-01.

totSessions — total number of sessions connected to Boolware server.
numsSessions — number sessions connected right now to Boolware server.
peakSessions — peak value of number sessions connected to Boolware server.
execSessions — number of executing sessions

peakexecSessions — peak number of executing sessions.

errors — number of errors reported.

timerStart — measure time started in seconds since 1970-01-01.
timerElapsed — number of seconds since timerStart.

numCommands — number of commands handled by Boolware server

Counter "0" — "5" array containing following elements:

counterType — counter type

counterName — descriptive counter name

accumulated — number of times this counter is updated

itemValue — array containing "counterName", "accumulated"”, "maxValue" and
"minValue" for current counter

threadTimeValue — array containing "counterName", "accumulated", "maxValue" and
"minValue" for current counter for the thread time

wallTimeValue — array containing "counterName", "accumulated"”, "maxValue" and

"minValue" for current counter for the wall clock time

"timerCounterQ" — "timerCounter5" array containing "countertype", "elapsedTime" and
"infoString" where "elapsedTime" is a value in milliseconds
since start of server.

bw_get_query

297

array bw_get_query(resource connection, string table, integer querynumber)

This function fetches the requested query from the QueryHistory. The QueryHistory reflects
what has happened since the last FIND command. Each query will be saved as a "line" in the
QueryHistory. The purpose of the QueryHistory is to give a possibility to "browse" through the
search session and continue the refinement from any query within the QueryHistory. For a
detailed description see Operations Guide.

The function returns an array.

Parameters:

connection — the connection link, returned from bw_connect().
table — the name of the current table.

qguerynumber — the number of the wanted query.

Returns:

The result is returned as an array, containing the following entries:

retcode — zero on success; otherwise a negative error code.

total — total number of queries in the QueryHistory.

intermediate — the number of the current Query

query — the current query (see Boolware query language in Operations Guide).

bw_get _query_lines

array bw_get_query_lines(resource connection, string table)

This function fetches the QueryHistory. The QueryHistory reflects what has happened since the
last FIND command. Each query will be saved as a "line" in the QueryHistory. The purpose of
the QueryHistory is to give a possibility to "browse" through the search session and continue the
refinement from any query within the QueryHistory. For a detailed description see Operations
Guide

The function returns an array.

Parameters:

connection - the connection link, returned from bw_connect().
table — the name of the current table.

Returns:

The result is returned as an array, containing the following entries:

retcode — Zero on success; otherwise a negative error code.
total — total number of queries in the QueryHistory.
current — the number of the current Query

bw_get_query_time

float bw_get_query_time (resource connection)

This function returns the Boolware internal query time. CPU time (elapsed time minus disc time)
used for the last bw_query() method call, in seconds.

Parameters:
connection - the connection link, returned from bw_connect().

298

Returns:
Elapsed CPU time in seconds.

Example:

<?php

// Get connection, open database and perform a query
$link = bw connect("192.168.1.100", "My session");
bw open($link, "database");

bw query ($link, "table", "find column:a* or s*");

// Get number of hits
$lim = bw_hitcount ($link, "table");

// Get and print result and Boolware internal query time for the last query
Selapsed = bw_get querytime($1link);

printf ("
%d records found in %$f seconds.
\r\n", lim, Selapsed);
>

bw_get rankmode

integer bw_get_rankmode(resource connection, string table)

Returns the current rank mode. The order of the found tuples depend on the rank mode.

Parameters:

connection —the connection link, returned from bw_connect().
table — the desired table.

Returns:

current rank mode, one of the following:

* BNORANK 0 No ranking

« BOCCRANK 1 Rank by occurrence

* BFREQRANK

* BSIMRANK

* BSORTRANK

* BSORTDRANK

* BWEIGHTOCCRANK

* BWEIGHTFREQRANK

* BEACHTERMOCCRANK
« BCUSTOMRANK

* BFUZZYRANK

Rank by frequency
Rank by similarity
Rank by sort (Ascending)
Rank by sort (Descending)
Rank by weighted occurrence
Rank by weighted frequency
Rank on specified Term
Rank by Custom

0 Rank by fuzzy

POO~NOOAWN

bw_get_setting

array bw_get_setting(resource connection)
Returns session settings. Use execute_xml() or bw_set_settings_xml() to change settings.

Parameters:
connection - the connection link, returned from bw_connect().

Returns:
The result is returned as an array, containing the following entries:

session_id — session ID, see bw_connect().
database — name of selected database, see bw_open()

299

auto_trunc — Boolean value for automatic right truncation.

prox_gap — max distance between terms (proximity search)
prox_order — true if terms should be in specified order (proximity search)
vsm_threshold — lowest similarity score for similarity search.

bw_get_settings_xml

array bw_get_settings_xml(resource connection)

This function returns current session settings.

Use execute_xml() or bw_get_settings_xml() to change the session settings.

Parameters:
connection — the connection link, returned from bw_connect().

Returns:
The result is returned as an array, containing the following entries:

retcode — Zero on success; otherwise a negative error code.
settings — the session settings as an xml-string

A detailed description of the xml-string under the head line, XML elements for session settings,
in this document.

bw_hitcount

integer bw_hitcount(resource connection, string table)

Returns number of found records from the last query.

Parameters:

connection - the connection link, returned from bw_connect().
table — the database table.

Returns:

number of found records, or —1 on error.

Example:

<?php

// Read all tuples in the current search result

for ($i = 0; $i < $bw_hitcount ($link, "mytable"); $i++)
{
// Move to next record
bw moveto ($link, "mytable", $i);

}
?>

bw_moveto

integer bw_moveto(resource connection, string table, integer hitno)

Fetches one tuple from the data source. After a successful call to bw_moveto(), the fields are
available via bw_fields().

300

Parameters:
connection - the connection link, returned from bw_connect().

table — the desired table.
hitno — the tuple to read. The first tuple is number zero.
Returns:

zero on success; otherwise a negative error or positive warning.

Example:
<?php
bw_set select cols($link, "ID, Name, Phone");
// Read all tuples in the current search result
for ($i = 0; $i < $bw_hitcount ($link, "mytable"); $i++)
{
// Move to next record
bw _moveto ($1link, "mytable", $i);
}

>

bw_movetoex

array bw_movetoex(resource connection, string table, integer hitno)

Fetches one tuple from the data source. After a successful call to bw_movetoex(), the fields are
available via bw_fields().

Parameters:

connection - the connection link, returned from bw_connect().
table — the desired table.

hitno — the tuple to read. The first tuple is number zero.
Returns:

The result is returned as an array, containing the following entries:

retcode — Z€ero on success; otherwise a negative error or positive warning.
score — search score result value

Example:

<?php

bw _set select cols($link, "ID, Name, Phone");
// Read all tuples in the current search result
for ($i = 0; $i < $bw_hitcount ($link, "mytable"); $i++)
{
// Move to next record
Sres = bw movetoex($link, "mytable", $i);
if(Sres[‘retcode’] < 0)
error;

}
?>

bw_open
integer bw_open(resource connection, string DSN)

Opens a specific database, makes it active.

Parameters:

301

connection - the connection link, returned from bw_connect().
DSN — the Boolware DSN of the desired database.

Returns:
zero on success; otherwise a negative error or positive warning.

Example:

<?php

// Open database "Companies", print error

if (bw open($link, "Companies") != 0)
echo bw_error ($1link);

7>

bw_query

integer bw_query(resource connection, string table, string cmd)

Executes a query at Boolware, returning number of found records.

Parameters:

connection — the connection link, returned from bw_connect().
table — desired session ID.

Returns:

number of found records, or —1 on error.

Example:

<?php

// Find persons in zip code 12345 with a salary above 100
Scmd = ‘find zip:"12345" and salary:>100';

Scount = bw_query($link, ‘mytable’, $cmd);

?>

bw_reconnectifexists

resource bw_reconnectifexists(string server, string session [, connecttimeout])

Connect the current session to Boolware server on requested computer.

Parameters:

server — server name or |IP-address to Boolware server

session — name of the sessions

connecttimeout — if supplied, set the max socket connect timeout in msec.

Boolware Server must be running on a computer in the network, which could be reached by the
client before the connection could take place.

The parameter ‘server’ should be the name of the computer in the network or its IP-address; for
example 192.168.0.1.

Note that the computer the client is running on must be able to access the server where
Boolware is installed.

Returns:
a connection link if everything went OK, else NULL

Example:

302

<?php

// Reconnect to "192.168.1.100" wuth sessions ID "My session"
$link = bw reconnectifexists("192.168.1.100", "My session");
7>

bw_set_error_mode

integer bw_set_error_mode(integer errormode)

Controls how this extension should report errors. By default, any serious error such as for
example bw_connect() failing because there is no server will terminate the script. This behavior
can be changed, so that the application takes full responsibility for checking return codes.

Parameters:
errormode — the PHP error mode to use(). One of the following:
1 — print error message and terminate the script (default). E_ ERROR
2 — print error message, but do not terminate script. E_WARNING
8 — do not print error message, do not terminate script. E_NOTICE.
Returns:

The new errormode if successful; otherwise NULL.

bw_set fetch_size

integer bw_set_fetch_size(resource connection, integer fetch_size[, maxchars])

When fetching tuples sequentially from Boolware, performance will increase if the client fetches
more than one tuple per network call to Boolware. Please note that this does not change the
way bw_moveto() behaves. It still fetches a single row at a time.

Be aware that a high value may be counterproductive, may slow things down. A good value is
usually something around 50.

To improve the performance further you could specify a third optional parameter, maxchars,
which will limit the output of each column to the specified number of characters. This is usable
when you just want to show a small number of characters from a huge text column. If the
parameter is omitted the total number of characters for each column will be fetched.

Parameters:

connection — the connection link, returned from bw_connect().
fetch_size — number of tuples to fetch per network call.

maxchars — max number of characters for each column (optional)
Returns:

zero on success; otherwise a negative error or positive warning.

Example:
<?php
bw set fetch size($link, 50);
// Read all tuples in the current search result
for ($i = 0; $i < Sbw_hitcount ($link, "mytable"); Si++)
{
// Move to next record
bw moveto ($link, "mytable", $i);
}

bw set fetch size(l);

303

7>

bw_set_rankmode

integer bw_set_rankmode(resource connection, string table, integer rankmode)

Sets the current rank mode. The order of the search result tuples depend on the rank mode.

Parameters:
connection — the connection link, returned from bw_connect().
table — the desired table.

rankmode — see bw_get rankmode() on the previous page.

Returns:
zero on success; otherwise a negative error code.

bw_set_select_cols

integer bw_set_select_cols(resource connection, string columns)

Controls which columns that Boolware should fetch from the data source, for each call to
bw_moveto().

Parameters:
connection - the connection link, returned from bw_connect().
columns — the columns that should be fetched, a comma separated string. Used in SQL

context, so an asterisk (*) means "all columns".

Returns:
Zero on success; otherwise a negative error or positive warning.

Example:
<?php
bw_set select cols($link, "ID, Name, Phone");
// Read all tuples in the current search result
for ($i = 0; $i < $bw_hitcount ($link, "mytable"); $i++)
{
// Move to next record
bw moveto ($1link, "mytable", $i);
}

7>

bw_set_settings_xml

integer bw_set_settings_xml(resource connection, string settings)

This function sets the new session settings.

Use bw_get_setting() or bw_get_settings_xml() to view the current session settings.

The parametern settings is an xml-string which describes the new session settings. A detailed
description of the XML elements is found under the head line, XML elements for session

settings, in this document.

Parameters:

304

connection — the connection link, returned from bw_connect().
settings - the new session settings.

Returns:
zero on success; otherwise a negative error code.

bw_sort_result

integer bw_sort_result(resource connection, string table, string expression)

The format of the parameter expression is: column name followed by order type, 'ASC',
ascending, or 'DESC', descending. Sort columns containing no data could be "sorted" first or
last by using the parameter emptydata=first/last. Separate columns by a comma sign. If the first
sort column is indexed as string or numeric you could specify the number of records to sort. The
number is specified after order (column desc:100).

Default order type is 'ASC' and can be omitted. Default order for emptydata=last and could be
omitted.

For a deeper description and examples see Chapter 2 "API description" section BCSort() above.

Parameters:

connection — the connection link, returned from bw_connect().
table — the desired table.

expression — the sort mode expression

expression syntax:

<colname> [asc/desc[:nn]] [emptydata='first/last'] [sortalias='coll, col2']l [,]
where :

colname the column name to perform the sort on.

optional:

asc/desc ascending or descending; default is ascending

:nn sort the nn first at each sort request

emptydata first/last set fictive sort order if no data in column
first indicates that the empty value will be treated as sort value ascii 0
last indicates that the empty value will be treated as sort value ascii 255 default is
last

sortalias upon empty data in colname use another column to collect data that will be used
for sorting.
Up to 5 sortalias columns, comma separated, can be given i.e. if coll is empty try
next specified column col2 etc.
If column name needs quotation marks make sure to double quote if using the
same quotation mark as around the whole sortalias expression. E.g.
sortalias='"'"'Col 1'', '"'Col 2'"'
sortalias="'Col 1', 'Col 2'"

, separates multiple sort columns

Returns:
zero on success; otherwise a negative error code.

bw_tables

305

array bw_tables(resource connection, integer index)
or
array bw_tables(resource connection, 0, string tableName)

Returns information about a table via table index or via table name.

Parameters:
connection - the connection link, returned from bw_connect().
index - table index, starting from zero.
or
connection - the connection link, returned from bw_connect().
0 - integer zero
tableName - name of the table
Returns:

The result is returned as an array, containing the following entries:

name — table name.

recordcount — number of tuples in the table. —1 if database doesn’t support this.
hitcount — number of tuples in current search result.

indexed — non-zero if table is indexed by Boolware.

status — table status, online/offline/readonly etc.

fieldcount — number of fields in the table.

bw_tables_count

integer bw_tables_count(resource connection)
Returns the number of tables within the currently selected database.

Parameters:
connection - the connection link, returned from bw_connect().

Returns:
Number of tables, or —1 in case of error.

bw_version

string bw_version(resource connection)

Returns a string that holds the Boolware version, for example:
Boolware server version : 2.3.0.0.

Parameters:
connection — the connection link, returned from bw_connect().

Returns:
The Boolware version, or NULL in case of error.

Example:

<?php

// Show Boolware version
echo bw version($link);
>

306

Example

A very small example how to use the PHP extension when interacting with Boolware.
The example shows how to query a Column in a Table in a Database and fetch the result.
The following steps should be performed:

Connect with Boolware; show version info

List all Databases, Tables and Columns

Open the first Database

Query the first Column in the first Table in the opened Database
Fetch the first 20 tuples of the result

Tuple loop; Print Column Headers and print Column data
Disconnect from Boolware

NogakrwdE

The code could be as follows:

<html>
<head>
<title>Boolware PHP test page</title>
</head>

<body>

<?php
phpinfo();

// Connect with Boolware, show version info
$link = bw connect("127.0.0.1", "SessionID");

printf ("Boolware version: %s
\r\n", bw version($link));
printf ("Databases: %d

\r\n", bw databases count ($link));

;; List all databases, tables and columns
gér ($1 = 0; $i < bw_databases_count ($1link); S$i++)
éDB = bw_databases ($1link, $1i);
if (SDB["status"] == 0)
éwfopen(slink, SDB["dsn"]) ;

printf ("Name: %$s - DSN: %s - Remark: %$s -
Status: %d4d",
SDB["name"], S$SDB["dsn"], S$DB["remark"], S$SDB["status"]);

printf (" No. tables: %d
", bw tables count ($link));
for(sj = 0; $Jj < bw_tables count($link); $j++)
{
STable = bw_tables ($link, $3);
printf ("\r\n
Table: %s - Records: %d",
STable["name"], $Table["recordcount"]);
printf ("
Columns: (name, type, size)");
for (Sk = 0; $k < $Table["fieldcount"]; Sk++)
{
SField = bw fields ($link, $Table["name"], S$k);

307

printf ("
%s - %d - %d",

SField["definedsize"]);

}

echo "

";

}

//

// Open the first database

//

$DB = bw_databases ($link, 0);

bw open($link, $DB["dsn"]);

//

// Query the first column in the first table
//

STable = bw_tables(S$link, 0);

S$Field = bw fields ($Slink, STable["name"], O0)

Sc

md = sprintf ("find [%s]:*",

SField["name"]) ;

bw_query ($link, $Table["name"], $cmd); //
im = bw_hitcount ($1ink, $Table["name"]);

$1

printf ("
Records found:

//

$d
\r\n", $lim);

// Fetch the first 20 tuples of the result

//

if ($1lim > 20)

$lim = 20;

bw _set fetch size($link, 20);

bw_set select cols ($link,

echo

//
//
//
fo

Tuple loop

r ($Sr = 0; Sr < $lim; Sr++)
{

u*u);

"<table border=1 font=Arial size=2>\r\n";

bw _moveto($link, $Table["name"], S$r);

if ($r == 0)

{
//
// Print column headers

//
echo "<tr>\r\n";

for ($i = 0; $i < bw_fields count($link,

{

$field = bw fields($link, "@", $i);

printf ("<td>%$s</td>\r\n",

}
echo "</tr>\r\n";

}
//

// Print column data

//
echo "<tr>\r\n";

for (Si = 0; $i < bw fields_

{
$field = bw fields($Slink,
printf ("<td>%s</td>\r\n",
}

echo "</tr>\r\n";

}

echo "</table>";

$Field["name"], S$Field["type"],

n@n) ; $i++)
Sfield["name"]) ;
count ($1link, "@"™); Si++)

"er, $i);
Sfield["value"]);

308

echo "Calling disconnect";
bw disconnect ($link, 1);

>

</body>
</html>

309

Chapter 9
Boolware xml client

This client contains five different functions; BCXmIOpen, BCXmlVersion, BCXmIRequest,
BCXmIGetErrorMsg and BCXmIClose, defined in the file xmlclient.h

It is important to be familiar with the Boolware xml-request and xml-response elements on how
to build XML requests and interpretate the responses.

See Chapter 3 "XML API" for all details about XML-Requests and Responses.

310

BCXmIOpen()
BWHANDLE BCXmlIOpen(char *srv, char *sessName)

Creates and open a connection to Boolware resided on the server specified with the parameter
srv and a session name.

Parameters:
char *srv the socket address to Boolware [IN]
char *sessName a session name, optional [IN]

This function establish a connection to a Boolware server resided on the server with specified
IP-address. The supplied session name will be the name of the session in Boolware, if empty an
unigue session name is generated by Boolware server. The session name can be obtained from
all XML-responses later on, enclosed by element tag <session>session hame</session>.

This function returns, upon success, a handle to an internal memory object that shall be
supplied in all other routines associated with this particular connect.

Return:
I=0 a handle to an internal object that should be supplied to other
functions for this session.
Referred in this document as the connection handle and the variable bwHandle
0 upon error (NOTE; return value of Zero indicate an error)
Example:

Connect to a Boolware on a server located at IP-address 192.168.1.100, and no session name
supplied.

BWHANDLE bwHandle = O0;
if ((bwHandle = BCXmlOpen("192.168.1.100","")) == 0)
..handle error

else
printf ("A connection to Boolware is established OK\n");

311

BCXmIReopen()
BWHANDLE BCXmIReopen(char *srv, int sessName)

Creates a connection to Boolware on the requested server, srv, with a specified session name,
sessName.

Parameters:
char *srv IP-address to Boolware [IN]
char *sessName name of session to be re-connected [IN]

This function re-establishes a connection to Boolware on a specified IP-address with a specified
session name.

The function returns a handle to an internal memory block which should be used by the session
when calling all other functions.

Return:
I=0 handle to an internal memory block to be used by the session when calling other
functions. This handle will be referred to as the session handle with the variable name
bwHandle.
0 when error (NOTE; return value zero is an error)

Example:
Re-establish the session "Bob" to Boolware at IP-address 192.168.1.100.

BWHANDLE bwHandle;

if ((bwHandle = BCXmlReopen("192.168.1.100", "Bob")) == 0)
. handle error
else
printf ("A connection to Boolware is established OK\n");

312

BCXmlVersion()
Int BCXmlVersion(char *buff, int buffsz)
Obtain a printable version string of the BCXmIClient.

Parameters:
char *buff output buffer to store version info
int buffsz size of output buffer in bytes

Example:
Get the version of the BCXmIClient in printable format.

char buffer[256]; /* Response buffer */
int rc;

rc = BCXmlVersion (buffer, sizeof (buffer));
printf ("Version: %$s\n", buffer);

313

BCXmIRequest()
int BCXmIRequest(BWHANDLE bwHandle, char *req, char *resp, int respsz, int httpHeader)

Send a xml-request to Boolware and receive a xml-response from Boolware

Parameters:

BWHANDLE bwHandle client connection handle [IN]

char *req buffer containing the xml-request [IN]
if set to NULL no request will be sent

char *resp buffer to store the response from Boolware server [OUT]
if set to NULL no response will be copied

int respsz size of the response buffer in bytes [IN]

int httpHeader if set a http header will be produced [IN]

This function shall be used to send xml-requests and receive xml-responses from Boolware.

Returns:
>=0 the total size of the response
<0 communication error to Boolware or memory allocation error
if return value eq to BEBUFFERTOOSMALL response do not fit
in supplied buffer

The option to set the out buffer, resp, to NULL is done to be able to obtain the size of the
response. The response can be quite large, many KB of data and a buffer large enough must
be allocated by the caller before obtaining the response. The response is stored in the client
after a request is sent to the Boolware server and can be fetched at a second call to
BCXmIRequest by setting the parameter req to NULL. The client will not call Boolware server
one more time with the request if set to NULL. If calling this function twice to obtain the
response part make sure to keep the value of httpHeader flag.

If the size of the response is known just call the BCXmIRequest with proper buffer settings.

If httpHeader is set and the req starts with a http header the xmiclient will save the header and
prefix the XML response data with supplied header with a modified "Content-Length" message.
If no header found a simple http header will be created containing "Content-Length" and
"Content-Type".

Example 1:
Here you know that the response of our xml-request fits in buffer.

char buffer[4096]; /* Response buffer */

int rc;

if ((rc = BCXmlRequest (bwHandle, req, buffer, 4096, 1)) > 0)
printf ("Respons: %$s\n", buffer);

else
..handle error;

Example 2:
Here you do not know the size of the response of our xml-request.

char *buffer; /* Response buffer */

int rc, buffsz;

if ((rc = BCXmlRequest (bwHandle, req, NULL, 0, 1)) > 0)
{

buffsz = rc;
buffer = (char *)malloc(buffsz);
if ((rc = BCXmlRequest (bwHandle, NULL, buffer, buffersz, 1)) < 0)

..handle error
else
printf ("Response: %$s\n",buffer);

314

free (buffer); /* Free allocated buffer */
}

else
..handle error;

315

BCXmIGetErrorMsg()
int BWXmlGetErrorMsg(BWHANDLE bwHandle, char *buff, int buffsz)

On error get information about the error.

Parameters:
BWHANDLE bwHandle sessions handle [IN]
char *buff buffer to store the error message [OUT]
int buffsz size of the buffer in bytes [IN]
Example:

Get error message.

char buffer[256]; /* Response buffer */

int rc;

rc = BCXmlGetErrorMsg (bwHandle, buffer, sizeof (buffer));
printf ("Error: %$s\n", buffer);

316

BCXmIClose()
int BCXmIClose (BWHANDLE bwHandle, int logout)

Close the connection associated with handle from the function BCXmIOpen.

Parameters:
BWHANDLE bwHandle sessions handle [IN]
int logout terminate the session in Boolware [IN]

This function close the connection to Boolware server and free allocated memory for the
session handler.

After call to this function the session handler is no longer valid.

Returns:
0 upon success
-1 upon error

Example 1:

Close the connection and free the memory hold by the session handle. The parameter logout is
set to O; indicate that the session remains in the Boolware server and will be logged out by time.

BCXmlClose (bwHandle, 0);
bwHandle = 0;

Example 2:

Close the connection and free the memory hold by the session handle. The parameter logout is
set to f; indicate that the session will be logged out from the Boolware server immediately.

BCXmlClose (bwHandle, 1);
bwHandle = 0;

Program example

Here is a program snippet. This snippet we assume that there is a database in the Boolware
server containing company information. The name of the database is ‘Company’ and the name
of the table is ‘CompanyInfo’.

Locate all companies resided in London and have more than 20 employees. We will fetch the
first 10 companies and column data from columns ‘CompanyName’, ‘CompanyID’, ‘City’ and
‘ZipCode’. Maximum 50 bytes from each column.

We also want to prefix the replay with a http header.

int main(int argc, char **argv)
{
BWHANDLE bwHandle = 0;
int buffersz, rc;
char *buffer, msg[256];
char *req = " <?xml version=\"1.0\" encoding=\"1is0o-8859-1\"?2> \
<SoftboolXML requests> \
<SoftboolXML request type=\"query\"> \
<open_session name=\"\" queryhistory=\"0\"/> \
<database name=\"Company\"/> \
<table name=\"CompanyInfol\"/> \
<query> FIND City:london and \"Employees\":>20</query> \

317

<response type=\"\" href=\"\" queryhistory=\"1\"> \
<sort expression=\"\"/> \

<records from=\"1\" count=\"10\" maxchars=\"50\"> \
<field name=\"CompanyName\"/> \

<field name=\"CompanyID\"/> \

<field name=\"City\"/> \

<field name=\"ZipCode\"/> \

</records> \

</response> \

</SoftboolXML request> \

</SoftboolXML requests>";

if ((bwHandle = BCXmlOpen ("192.168.1.103", "")) != 0)
{
if ((rc = BCXmlRequest (bwHandle, req, NULL, 0, 1)) > 0)
{
buffersz = rc;
buffer = (char*)malloc (buffersz);
if ((rc = BCXmlRequest (bwHandle, NULL, buffer, buffersz, 1)) > 0)
printf ("%s", buffer);
}
}
else
{
// Get error message
BCXmlGetErrorMsg (bwHandle, msg, sizeof (msg));
printf ("Error:%s\n", msqg);

}

// Close connection
BCXmlClose (bwHandle, 1);
Return 0;

}
The replay from this command is:

Content-Length: 2374
Content-Type: text/html

<?xml version="1.0" encoding="iso-8859-1" ?>
<SoftboolXML responses>

<SoftboolXML response type="query" error code="0" flowexit="">
<session>0000006767</session>

<records total="28" from="1" to="10" rank="no rank">
<record score="1.000">

<field name="CompanyName">Company Alpha Ltd</field>
<field name="CompanyID">111111</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Bravo Ltd</field>
<field name="CompanyID">222222</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Charlie Ltd</field>
<field name="CompanyID">333333</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Delta Ltd</field>
<field name="CompanyID">4444444</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

318

<record score="1.000">

<field name="CompanyName">Company Echo Ltd</field>
<field name="CompanyID">5555555</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Foxtrot Ltd</field>
<field name="CompanyID">6666666</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Golf Ltd</field>
<field name="CompanyID">77777777</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Hotel Ltd</field>
<field name="CompanyID">88888888</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company India Ltd</field>
<field name="CompanyID">9999999</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

<record score="1.000">

<field name="CompanyName">Company Juliette Ltd</field>
<field name="CompanyID">00000000</field>

<field name="City">London</field>

<field name="ZipCode">21228</field>

</record>

</records>

<queryhistory total="0">

</queryhistory>

</SoftboolXML response>

</SoftboolXML responses>

Error handling

The xmiclient can return different types of errors and all of these are defined in the file
xmlclient.h. All errors returned are critical except the BEBUFFERTOOSMALL error.

This error can be received from the function BCXmIRequest() and means that the reply buffer
provided is not large enough to hold the entire response.

Other errors and warnings that belongs to the xml request is invoked in the xml response. The
element attribute ‘error_code’ is positive for warnings and negative for errors:

<SoftboolXML response type="query" error code="0" flowexit="">

and there is a message provided within the element <error> or <warning> depending on the
error_code. Warning and error codes are declared in the file softbool.h.

Example:
Query syntax error in the query; a right parenthesis is missing.

<?xml version="1.0" encoding="iso-8859-1" ?>

<SoftboolXML responses>

<SoftboolXML response type="query" error code="-103" flowexit="" >
<session>0000000002</session>

319

<error>Right parenthesis expected</error>
</SoftboolXML response>
</SoftboolXML responses>

Example:
A warning; extra synonyms are used during the query when search for: London

<?xml version="1.0" encoding="iso-8859-1" 2>

<SoftboolXML responses>

<SoftboolXML:response type="query" error code="103" flowexit="">
<session>0000000005</session>

<warning warning code="103">The following Synonyms have been searched for:
LONDON, CHELSEA, WIMBLEDON</warning>

</SoftboolXML response>
</SoftboolXML responses>

320

Chapter 10
Plugins

This chapter describes how to implement a plugin for Boolware.

General

Plugins are external components that can be used to customize certain functions in Boolware.
A plugin for Boolware should be written as a DLL (or .so on Linux) and must support callbacks.

Boolware is a multi-threaded, thread safe program. This means that several independent
execution paths are active at the same time, for example fifty users may post queries at the
same time. This poses some simple rules that the plugin must comply with to be thread safe.
The most basic rule is that a plugin may not use global variables, at least not without taking
care in synchronizing access to these using locks. A plugin may use the 'usr1’ pointer supplied
by Boolware, in order to store thread data.

NOTE: programming errors in a plugin can make Boolware instable. This is unavoidable due to
the fact that a plugin is implemented as a shared library, and hence executes in the same
address space as the main process Boolware itself. This means that high demands are posed
on each plugin. Code with care, and there will be no problems.

Softbool guarantees the quality of plugins developed by Softbool in-house, but cannot take
responsibility for problems caused by plugins developed outside Softbool.

Currently there are four different types of plugins in Boolware:

e01 — custom indexing

e02 — custom scoring

€03 — custom phonetic

€04 — dynamic ranking of search results

Registering plugins

All plugins (.dll / .s0) must be in the same directory as Boolware server. NOTE that Boolware
must be restarted when a plugin is added to or removed from this directory.

Custom indexing (e01)

The name of a custom indexing function should be: e01.name.dll/so.
Example: e01.ownterms.dll for Windows.

In the Boolware Manager you can choose among existing functions. You could use them on
Database-, Table- and Column level. See also the Help section in Boolware Manager.

There is a configuration file for each type of plugin (E01, EO2, EO3 and EO04). When a plugin is

selected, a section with the name of the plugin is created in the configuration file corresponding
to its type.

321

Example: if the plugin "e01.split.dll" has been chosen for the column Name in the table
Company, a conf-file with the name "db.Company.Name.e01.conf" will be created. The content
of this file will be:

[hooks]
1=Split

[Split]
OnlySearch=0

More than one plugin can be selected for a single column:

Example: if the plugin "e01.shrink.dll" has been chosen for the same column Name in the table
Company. A new section in the same conf-file "shrink" will be created:

[hooks]
1=Split
2=Shrink

[Split]

OnlySearch=0
[Shrink]

Seps=& and og och et
Before=1

After=1
OnlySearch=0

Parameters for plugins

If a plugin needs parameters (i.e. file names, paths etc.), there is support for editing the
Boolware .conf file using Boolware Manager.

Parameters are stored in .conf file associated with a column. The names of the parameter files

are controlled automatically by Boolware. Parameters for a certain plugin is stored in a section
with the same name as the plugin itself. See above (Split and Shrink).

Custom scoring (e02)

The name of a custom scoring function should be: e02.name.dll/so.
Example: e02.ownscoring.dll for Windows.

The custom scoring will be called if the element <scoring> contains the attribute custom="name
of the custom scoring module".

Custom phonetic (e03)

The name of a custom phonetic function should be: e03.name.dll/so.
Example: e03.ownphonetic.dll for Windows.

Using Boolware Manager, you select which fields that should use the custom phonetic function.

The custom phonetic function is called when the subcommand sound is used on a field that has
been configured with Boolware Manager to use the custom phonetic plugin.

322

Custom ranking (e04)

The name of a custom ranking plugin should be: e04.name.dll/so.
Example: e04.ownranking.dll for Windows.

The custom rank plugin is called when the attribute customrankexit="ownranking" is specified
for a <resultset> or <sort> element.

Plugin API

Depending on the which type of plugin you are going to develop, different APIs are used.
The e04 plugins use a newer API that is described at the end of this chapter.

Together with the Boolware distribution, complete source code examples are provided for two
indexing plugins (e01), "Split" and "Shrink", and also one source code examples for a custom
rank plugin (e04).

GetlInfo()

This function is used for e01, e02 and €03 plugin modules. It is called by Boolware server when
initializing the plugin. It supplies Boolware with a name and a description about what the plugin
does, as well as which version of the plugin APl it is coded for.

The verbal description is used by Boolware Manager when it is showing available plugins

Example:

/**

* Returns info about this plugin back to Boolware.

*

* @param hostVer - I - Boolware version in MM.II.RR.CC format,
* where MM is Major version, II is Minor version,

* RR is Release number and CC is Correction number.
* @param name - O - name of this plugin, for example "split"

* @param nameSz - I - size of name area, in bytes

* @param version - O - version of this plugin, in MM.II format
* @param versionSz - I - size of version area, in bytes

* @param info - O — A line of descriptive text

* @param infoSz - I - size of info area, in bytes

* (@param param - Parameter description strings

*

* @return zero if OK, else module will not be used by Boolware.
*/
static char *paramDef[] = {NULL};

int GetInfo(char *hostVer, char *name, int nameSz,
char *version, int versionSz,
char *info, int infoSz,
char *param([])

// Save Boolware version, return name, version and info

safecpy (bwVersion, hostVer, sizeof (hostVersion));

safecpy (name, "Split", nameSz);

safecpy(version, "01.01", versionSz);

safecpy (info, "Splits letters and digits, for example SL500 " \
"becomes two words: SL 500", infoSz);

param = (char) paramDef;

return 0;

323

Execute()

This function is used by plugins that implements custom indexing (e01). The function is called
by Boolware server to select terms from a text, to associate with the current tuple.

Parameters:

self An internal instance handle that must be passed back to Boolware at callbacks.
See further info about callbacks in the ’cb’ parameter.

field A pointer to all information regarding this field such as name, data type, selected
indexing options and so forth. See further down for detailed information.

docNo Boolware’s internal ID for this tuple. Must be passed back to Boolware by the
plugin.
when calling back to OutputTerm (see parameter 'cb’).

text Text to be indexed; in UNICODE UCS2 format.

length Length of text, in characters, not bytes.

cb Pointer to a control block which contains callback functions that can be invoked to

normalize the buffer and deliver terms back to the Boolware server. The control
block also includes variables such as cb->mode that specifies whether the function
is called from indexing or searching.
The Boolware server can specify which types of index terms it wants the function to generate. It
does this by setting the requested index types in the parameter cb->fFlags. If this parameter is
not zero, then this function should generate index terms for the requested index type or no
terms at all.

If the parameter cb->fFlags is zero, then the parameter field->fFlags contains the control
governing the type of index terms that the function can generate.

To test the index types that are set in fFlags use constants that are defined in the file
customindex.h subsection "Field Flags", such kindexWord and kindexString.

The following briefly describes the callback functions and variables that are available through
the control block.

enum enumMode { INDEX, SEARCH } mode;

Reveals if the plugin is called from indexing or search mode.

int fHookNo;

This plugins sequence number, > 0.

unsigned fFlags;

Contains zero - if the flags from the descriptor (word, string etc.) should be used else the flags
set by the calling module should be used

char fParamFile[256];

The parameter file name.

int (*CharType) (void *self, UCS2 ch);

324

Classifies the char ‘ch’ — see constants SB_CT... further down.
int (*GetChar) (void *self, int type, UCS2 ch);

Neutralize the character ‘ch’ via Boolware character tables. The parameter 'type’ indicates
which character table to use: standard neutralize or phonetic neutralize. If ‘type’ has another
value than the above specified, no neutralizing will be performed and the specified character
‘ch’ will be returned.

int (*Normalize) (void *self, int mode, UCS2 *dest, int destSz, UCS2 *src, int
srcSz) ;

Normalizes a text.

Normalizing normally means that all lower case letters will be translated to upper case and all
diacrits will be removed. The normalizing is controlled by character tables specified in the
Boolware Manager.

‘mode’

0 — Standard neutralizing,

2 — Swedish phonetics,

3 — English phonetics,

4 — soundex,

5 — modified soundex,

6 — west European phonetics

If other value on ‘mode’ than specified above, -1 will be returned.

Note that the size of ‘dest’ could be greater than the size of ‘src¢’ since some characters
generate two characters when doing phonetics.

void (*OutputTerm)(void *self, BW_FIELD *field,
UCS2 *term, int charCnt,
int docNo, int wordNo, int method);

Sends a term to Boolware. The task for the plugin is to produce search terms from a text. Each
selected search term is sent back to Boolware using this callback.

Parameters:

self Same ’self’ as Execute is called with (passed on)

field Same ‘field’ as Execute is called with (passed on)

term Selected term, in UCS2 UNICODE format

charCnt Length of 'term’, excluding any terminating NULL

docNo Same 'docNo’ as Execute was called with (passed on)

wordNo Not used in this version, always use 0 (zero)

method This parameter consists of a bit pattern with the following meaning:

Bit0-7 Selected index method for the word generated by the plugin, normally
METHOD_WORD

Bit8 — 15 Current hook number, i.e. callback->fHookNo

Bit 16 — 23 Boolean command between words:

‘A’ = AND
'0’=0R

‘N’ = NOT
X' = XOR

Bit 24 — 31 Not in use but should be set to 0

Example: method = (((‘A’ << 8) | cb->fHookNo) << 8) | METHOD_WORD;

325

Indexing method of term (see METHOD_* constants) in the lower eight bits, logical
operator and exit sequence number.
The operator in bits 16-23, the hook number in bits 8-15 and the indexing
method in bits 0-7.
E.g
method = (((‘A’ << 8) | cb->fHookNo) << 8) | METHOD_WORD;

int (*GetField)(void *self, UCS2 *name, UCS2 *result, int charCnt);

Reads a column from the current tuple.

Parameters:

self Same ’self’ as Execute is called with (passed on)

name Name of desired column value

result Buffer where Boolware will place the result, as a zero string

charCnt Size of 'result’, in characters

ExecCMD()

This function is used by plugins that implements custom scoring (e02) and is called by Boolware
server to score tuples (custom scoring).

Parameters are:

cmd Message for the plugin, see following description of BHC _ codes.
pl Parameter 1, a character pointer. (may be NULL).

p2 Parameter 2, a character pointer. (may be NULL).

cb Supplied functions for example character normalization.

ExecCMD returns an integer return code interpreted differently for each cmd.

BHC_INIT called by Boolware to initialize the plugin. Boolware always sends a BHC_DONE
when processing is done, to give the plugin an opportunity to release resources.
Returns 0 if everything went fine, < 0 on error. Processing is ended on errors.

BHC_DONEcalled by Boolware to give the plugin an opportunity to release resources.
Boolware
always sends a BHC_DONE when processing is done, regardless if BHC_INIT was
successful or not.

BHC_XML score a database tuple. The call contains two XML documents, pl contains the
guery and any parameters, and p2 contains the database tuple.

P1:

<?xml version="1.0" encoding="UTF-8"?>
<gp>

<query flow="E02 Company Match">
<CompName>ibm schweiz</CompName>

</query>

<param>
<field id="Company Name">

326

<rule id="Same tokens and same order" reduction ="0" weight="100"/>
</field>
</param>

</qp>

P2:

<?xml version="1.0" encoding="UTF-8"?>

<tuple>
<ID>448044383</ID>
<Name>Contisa Sammelstiftung der Allianz</Name>
<Street>Kirchstrasse 6</Street>
<zip>12345</Street>
<City>Bern</City>

</tuple>

The callback structure for ExecCMD contains the following:

int fVersion; // 4

char *fDSN, // DSN name
*fTableName, // Table name
*fMsgPtr, // Error messages
fParamFile[256]; // Name of parameter file

void *fContext, // READ: plugin can use as ID for instance data
*fTable, // READ: SysTable pointer, if any
*fField, // READ: Field info pointer, if any
*fTuple, // READ: Tuple pointer if any
*fDatal, // READ/WRITE
*fData2; // READ/WRITE

unsigned fFlags; // READ/WRITE

double fDouble; // READ/WRITE (old score)

CharType (cb, field, ch);

Classifies a char. See constants SB_CT further back in this text. A field name can be used (e.g.
"Name"), since different fields can have different character definitions. Field name should be
given as Latin-1 (not UTF-8).

Normalize (cb, field, method, dest, destSz, src, srcSz)

Normalizes a text buffer. Normalization means converting characters from lower to upper, and
to eliminate most diacritics (accents). Normalization is controlled by char tables defined in
Boolware Manager and accessed depending on which field is given.

method 0 - normalize (caps etc.), 2 - Swedish sound, 3 - European sound, 4 - English sound, 5 -
Soundex, 6 - Modified Soundex.

GetFieldInfo (cb, name);

Returns info about a certain field. The info is returned as a pointer to a BW_FIELD structure,
see descriptions of structures further back. If a field cannot be found, NULL is returned,

327

Custom ranking (e04)

Plugins of this type implement the following functions:

int Cleanup(void *userdata);

const char *Description();

const char *DefaultConfiguration();

int Execute(ExecuteParameters *parameters);
int Initialize(InitParameters *parameters);
int InterfaceVersion();

int Validate(ValidateParameters *parameters);
const char *Version();

For more information about these functions and their parameters, see the file: e04.customrank.h
that defines the plugin interface for custom ranking.

Questions and answers

Q: How do | determine if the plugin is called from search or indexing?
A: Use the "mode" field in the "cb" block:

/I Called from indexing?
if (cb->mode == SWordextractCB::INDEX)
return;

Q: What is a "term type", and what is its use?

A: Boolware supports several different indexing methods, and has the ability to differentiate
between these. This is so that an application can be able to say "now | want to search
phonetically" or "now | just want to search stemmed words". If Boolware didn’t differentiate the
terms in its index, but mixed standard terms with phonetic and stemmed terms, it would no
longer be possible to make an exact search. You would receive unexpected results.

A plugin programmer uses the term type when calling back to Boolware using OutputTerm. The
most common is "word" (METHOD_WORD), but other of course exist.

When Boolware calls Execute, it says in the "field.flags" which term types are desired.
"field.flags" is directly connected with the selected check boxes in Boolware Manager for this
field, and is not the same as the term type. If "field.flags" contains kindexWord, it means that the
caller wants Execute to generate "words", if it is kindexString then Execute should generate
strings (METHOD_STRING). Refer to the code example.

Q: What does "normalization" mean, in Boolware lingo?
A: Often (but not always) you want to equal small and capitalized letter when searching (case
insensitivity), and also equal characters with and without accents (é and e, fi and n etc.). This is

done in Boolware using a translate table controlled from Boolware Manager.

It is up to the plugin itself to decide if it wants to normalize the text or not.

328

Appendix 1
Constants and Structures

In this chapter the records used when transmitting information between the Boolware Client and
the Application.

Introduction

In most cases the information between Softbool Client and the Application and vice versa are
sent using strings and other standard data types such as integers. In some cases, however, it is
more practical to gather the information in a record. Below is a detailed description on the
information sent via records.

Some information consists of flags and constants and these are also described in this chapter.

Constants

Below all constants are described. This is a general description on how and when to use the
different constants.

As the constants could be slightly modified during the development it is highly recommended to

consult the following include files - that are part of the delivery - to get the latest version of the
constants: sbTypes.h, softbool.h, boolwareclient.h and xmiclient.h.

Constants to describe the presentation order

BNORANK 0 Same order as in the data source
BOCCRANK 1 Order occurrence
BFREQRANK 2 Order frequency
BSIMRANK 3 Order similarity
BSORTRANK 4 Sort (ascending)
BSORTDRANK 5 Sort (descending)
BWEIGHTOCCRANK 6 Weighted order occurrence
BWEIGHTFREQRANK 7 Weighted order frequency
BEACHTERMOCCRANK 8 Rank on specified Term
BCUSTOMRANK 9 Rank by Custom

1

BFUZZYRANK 0 Rank by fuzzy

When presenting the result you could get the records in any of the above order.

If no order specified (BNORANK) the records will be presented in the same order they have in
the data source.

When order is occurrence (BOCCRANK) or frequency (BFREQRANK) it reflects the
occurrences of the search terms within the records. Search terms from all queries since the last
FIND command are included in the calculation. Frequency means occurrences divided by total
number of words in the corresponding record.

329

Similarity (BSIMRANK) means the score that is calculated when comparing the records against
the text used when performing the similarity search. The score will be a statistical value
between 0 and 1 in the form 0.xxx.

Sort ascending (BSORTRANK) or descending (BSORTDRANK) ranks the records in specified
order. If more than one Column is part of the sort, you could set individual sortorder on each
Column.

Weighted order is a special case of occurrence and frequency. When searching you could
specify a weight on the search term which will be multiplied by the occurrence before the score
is calculated. In this way you could order records depending on the importance of the search
terms.

Constants for index methods used when searching and presenting index terms

BDEFAULTTYPE 0 Use default value
BWORDTYPE 1 Word

BSTRINGTYPE 2 String

BSTEMTYPE 3 Stemming
BPHONETICTYPE 4 Phonetic
BREVERSETYPE 5 Reversed order

As you could specify more than one index method on each Column it is important to tell the
system which type of term to search for or fetch from the index.

If the default value (BDEFAULTTYPE) is specified Boolware Server will choose the most
suitable type depending on how the Column is indexed. The system tries to find a suitable type
in the following order: word, string, phonetic, stemmed and reversed order.

Word (BWORDTYPE) means that the system will search for words when a query is performed.
Only words will be fetched when the index is examined.

If string (BSTRINGTYPE) is specified only strings will be searched for and presented when
fetching index terms.

If a Column is indexed as stemmed (BSTEMTYPE) all words will be converted to their stems.
The words write, wrote, written, writing etc. will all be converted to write.

Phonetic coded words are searched and fetched by help of the phonetic index method
(BPHONETICTYPE).

To be able to search for words that are left hand truncated (*ball) as fast as for normal truncated
words (car*) you should use this indexing method (BREVERSETYPE).

Constants used for Column attributes and types in variable flags

BCOL_STRING 0x00000001 String
BCOL_WORD 0x00000002 Word

BCOL PHONETIC 0x00000004 Phonetic

BCOL PROXIMITY 0x00000008 Proximity

BCOL SIMILARITY 0x00000010 Similarity
BCOL LEFTTRUNC 0x00000020 Left truncation
BCOL PROXLINE 0x00000040 Proximity line
BCOL_COMPRESS 0x00000080 Compressed
BCOL PERMUTATE 0x00000100 Permutated
BCOL_STEMMED 0x00000200 Stemming

BCOL CLUSTERED 0x00000400 Clustered

BCOL RANKING 0x00000800 Ranking

330

BCOL_FIELDSEARCH
BCOL_ FREETEXT
BCOL_ALIAS

BCOL_MARKUPTAGS
BCOL_STOPWORD
BCOL_FOREIGNKEY
BCOL_DATAXML
BCOL_SUBFIELD
BCOL_VIRTUAL

BCOL_CASE
BCOL_AUTOINCR
BCOL_MEMMAPPED
BCOL_FLDCHANGED
BCOL_PRESORTED

0x00010000
0x00020000
0x00040000

0x00100000
0x00200000
0x01000000
0x02000000
0x04000000
0x08000000

0x10000000
0x20000000
0x40000000
0x80000000
0x80000000

Field search
Free-text search
Non indexed alias field

XML element
Stop word
Foreign key
XML field

Sub field (XML)
Virtual field

Case sensitive

Automatic ID

Memory mapped

Presorted (Old description see BCOL_ PRESORTED)
Presorted

Constants used for Column attributes and types in variable flags2

BCOL2 GEOPOSITION

BCOL2 GEOMETERFORMAT
BCOL2 GEOMULTIPLE

BCOLZ2 ASISWORD
BCOL2 ASISSTRING

BCOL2 WITHINSTRING

BCOL2 MIXEDALIAS

0x00000001

0x00000002
0x00000004

0x00000010
0x00000020
0x00000080
0x00000100

BCOL2 POLYGONINDEXED 0x00000200

Field is Geoposition; Lat or Long,
WGS84 format

Field is Meter format like RT90
Field contains both Long/Lat in same
field

Field is exact Word

Field is exact String

Field is Within string

Field is Mixed Alias

Field is Polygon indexed

The above constants gives the possible attributes and types for a Column. As a Column could
contain more than one attribute the different attributes will be OR:ed together.

The constants could be divided into the following groups: indexing methods, field type, field
contents and field status.

Indexing methods

String indexing (BCOL_STRING) means that the contents in the Column is indexed as a string.
This means that the first 126 bytes of each line will be indexed as a string. Only leading and
trailing spaces will be erased from the string. When searching only exact matches will be found.

When word indexing (BCOL_WORD) all words in the Column will be extracted and indexed.
The maximum size of a word is 126 bytes.

Phonetic indexing (BCOL_PHONETIC) means that the extracted word will be coded reflecting
the pronunciation rather than the spelling . This method is very useful when dealing with names.

Proximity indexing (BCOL_PROXIMITY) is only useful when the Column contains a lot of text
where it is important to find combination of words when they appear close together.

Similarity search (BCOL_SIMILARITY) is used when you want to search for the entire contents
rather than single words. It is most useful when the Column contains a lot of text.

Left hand truncation (BCOL_LEFTTRUNC) means that the Column is indexed for extremely fast
response times when searching for words ended in the same way; FIND *ball.

If you want to search for words within the same line you should use this indexing method
(BCOL_PROXLINE). It is much alike a string indexing but in this case you could specify the

words in any order.

331

If a Column is marked for normalizing (BCOL_COMPRESS), all single characters separated by
a special character (blank, dot etc.) will be handled in the same way. E.g. IBM could be
specified in different ways: 1&B&M, I.B.M etc., but using this indexing method all combinations
will be coded as: IBM.

Another way to search for words in the same line in any order is to use the permutate indexing
method (BCOL_PERMUTATE). This means that all words within the same line are permutated
in all different combinations. This method requires a lot of disk space and BCOL_PROXLINE is
recommended.

Sometimes you could get better relevance by only using the stems of the words
(BCOL_STEMMED). This means that all verbs, adjectives, nouns etc. are converted to their
basic form: written, wrote, writing etc. will be coded as write.

In certain columns where you have grouped information the search performance could be very
much improved by using the clustered indexing method (BCOL_CLUSTERED).

If you want to rank the result depending on the occurrence of the search terms the columns
should be marked with this constant (BCOL_RANKING).

Field types

Field search (BCOL_FIELDSEARCH) means, means that all words in this Column will be
saved in a separate Index file. When searching only words within this Column (Field) will be
searched.

Free text search (BCOL_FREETEXT) means that all words from Columns marked with this
attribute will be saved in a special Index file. When searching free text all Columns with this
attribute will be searched.

A Column could be index both for Field and Free text search and it is in the query you determine
if you want to search only within this Column or all Columns indexed for free text.

There is another way to search several columns at the same time; you could specify an non
indexed alias column (BCOL_ALIAS) that holds several columns. This column does not contain
any data but only tells what columns to search.

Field contents

If a Column contains XML elements you could specify this constant (BCOL_MARKUPTAGS) to
avoid XML elements to be stored as index terms.

If you do not want noise words to be included into your index you could mark the Column to
ignore stop words (BCOL_STOPWORD). This means that all words that are specified in the
stop word file will be ignored. For detailed information see Chapter "Stop words" in the manual

Operations Guide.

If the contents of the Column are foreign keys it will be marked by this constant
(BCOL_FOREIGNKEY).

A text column that contains XML coded information is marked (BCOL_DATAXML). A XML
Column could contain sub fields, which Boolware could handle as a normal Column.

A sub field which is contained within a XML marked Column

(BCOL_DATAXML) is marked by (BCOL_SUBFIELD). This sub field could have attributes as a
Column and will be treated as a Column when searching. A sub field is not visible in the data
source but is a part of the XML text Column (BCOL_DATAXML).

332

If the field type is virtual (BCOL_VIRTUAL), the field could contain different types of information.
Independent of the contents the virtual fields are not part of the data source but is created
temporarily in Boolware. An example of a virtual field is the calculate field that contains a
formula and where the value from the calculation is saved

Field status

When the value of a Column is automatically incremented with a unique value by the data
source it could not be affected by Boolware. Usually it is a Column that contains an identification
(primary key) for the table. The Column is marked (BCOL_AUTOINCR).

Another way to make the searches even faster is to load parts of the index into memory. The
indexes that are loaded into memory are marked (BCOL_MEMMAPPED).

Constants that describes the status of a database

During a normal use of Boolware the different databases could have different status. Below the
different status are listed:

ONLINE The database could be used "on-line"
LOADING The database is being loaded
OFFLINE The database is "off-line"

PENDING The database is going to be loaded
READONLY The database could not be updated

By using the BCGetDatabaselnfo you could get the status for the current database.
When the database is ONLINE all operations could be performed against the database. This is
the normal status when using Boolware.

When a database should be loaded or re-loaded it is not possible to use the database for
searching. The status of the database will be set to LOADING and the only operation that could
be performed is to load the database.

If you do not want anybody to use the database it should be set to OFFLINE. This status is also
set by the system if the database is corrupt.

When a database should be loaded a certain amount of resources are required from the
system: a minimum amount of memory must be available. If there is not enough resources
when the loading of a database should start the status of the database is set to PENDING. The
loading of the database will wait until sufficient resources are available and will then start the
loading and change the status to LOADING.

During certain operations you do not want updates to affect the database but it is still usable for
searching; when reorganizing the database for example. In this case the status of the database
is set to READONLY. As soon as the current operation (reorganization) is finished the status is
reset to ONLINE and all updates that have been made will automatically be updating the
Boolware indexes.

Constants that describes the status of a Table

AVAILABLE The Table is available
NOTAVAILABLE The Table is not available

333

Constants for the database

The data types that are sent from Boolware to the application are mapped as follows:

Standard data types:

BSQL_ UNKNOWN_TYPE 0
BSQL CHAR 1
BSQL NUMERIC 2
BSQL DECIMAL 3
BSQL_ INTEGER 4
BSQL SMALLINT 5
BSQL_FLOAT 6
BSQL_REAL 7
BSQL_DOUBLE 8
BSQL_DATETIME 9
BSQL INTERVAL 10
BSQL_TIMESTAMP 11
BSQL_VARCHAR 12

Different data types for date and time:

BSQL TYPE DATE 91
BSQL TYPE TIME 92
BSQL TYPE TIMESTAMP 93

Extended data types:

BSQL LONGVARCHAR
BSQL BINARY
BSQL_VARBINARY
BSQL LONGVARBINARY
BSQL BIGINT
BSQL_TINYINT

BSQL BIT

BSQL_GUID

H Jo o w N
R — — — — — — —

Structures

In this part the used structures (records) are described. This is a general description on how and
when to use the different structures.

As the structures could be slightly modified during the development it is highly recommended to
consult the following include files - that are part of the delivery - to get the latest version of the
structures: sbTypes.h, softbool.h, boolwareclient.h and xmiclient.h.

Information on a Database

typedef struct
{
char dbName[128];
char descrName[256];
char dsnName[128];
int32 status;
} BCDatabaselInfo_t;

Name of the database
Description

Name in data source
Status

This record is used to pass information on the current database. The name of the database
specified in dbName is used in Boolware. A descriptive text could be specified in the field

334

descrName. The name of the database in the data source is stored in dsnName, while status
contains one of the following values: ONLINE, LOADING, OFFLINE, PENDING or READONLY.
These values are described above in the part "Constants that describes the status of the
database".

Note. The database identification field that should be used by the function Attach() is the
dsnName.

Information on a Table

typedef struct
{

char tabName[128]; Name of the Table
int32 flags; Flags

int32 hitCnt; Current result
int32 recordCnt; Totalt no. of rows

} BCTableInfo_t;

Information on a Table is passed using the above record. In tabName the name of the current
Table is stored. The element flags could for the moment only have two values: AVAILABLE,
NOTAVAILABLE (see part "Constants that describes the status of a Table" above). In the
variable hitCnt the latest search result is stored and recordCnt contains the total number of rows
in the current Table.

Information on a Column

typedef struct
{

char colName[128]; Name of the Column
int32 flags; Attributes

int32 dataSize; Size of the field
intl6 dataType; Data type ODBC
intl6 PKeySeqg; PK sequence no.
intl6 decPart; No. of decimals

} BCColumnInfo_t;

In this record is the information on the Column passed from function BCGetColumninfo.

The name of the Column is stored in the variable colName. In the variable flags all attributes for
this Column is stored (see part above "Constants used for Column attributes and types in
variable flags"). In the variable dataSize the allocated size of the Column is stored. The variable
dataType contains the data type the Column has in the data source. If the current Column is
part of the Primary Key the sequence number will be store in the PKeySeq variable; 0 (zero)
means that the Column is not part of the Primary Key. If values in this Column could contain
decimals the number of decimals is stored in the variable decPart.

typedef struct
{

char colName[256]; Name of the Column
int32 flags; Field attributes
int32 flags2; More field attributes
int32 dataSize; Size of the field
intl6 dataType; Data type ODBC

intl6 PKeySeq; PK sequence no.

intl6 decPart; No. of decimals

} BCColumnInfoEx t;

In this record is the information on the Column passed from function BCGetColumniInfoEx.

335

The name of the Column is stored in the variable colName. In the variable flags all attributes for
this Column is stored (see part above "Constants used for Column attributes and types in
variable flags"). Int the variable flags2 extended field attributes are stored (see part above
"Constants used for Column attributes and types in variable flags2"). In the variable dataSize
the allocated size of the Column is stored. The variable dataType contains the data type the
Column has in the data source. If the current Column is part of the Primary Key the sequence
number will be store in the PKeySeq variable; 0 (zero) means that the Column is not part of the
Primary Key. If values in this Column could contain decimals the number of decimals is stored in
the variable decPart.

Information on data in a Column

typedef struct
{

char “*name; The name of the Column
char *value; Data

int32 length; Length of data

int32 dataType; Type of data

} BCColData_t;

When data is fetched for a Column this record is used. The name of the Column is stored in
name and identifies which Column the passed data belongs to. In the variable value, the current
information is stored. The length that is specified in length does not include the ending null
character. The data type from the data source is saved in dataType (see part above "Constants
for the database").

Information on a row of data (result row)

typedef struct
{

float score; Score

int32 recordID; Record ID

int32 count; Number of Columns
BCColData t *cols; Data

} BCRowData_t;

Usually you will fetch data from several Columns to build up a result row or to display the
complete record. To do this use the above record BCRowData_t. The information from each
Column is stored in the variable cols, which is described above ("Information on data in a
Column"). After certain requests a row could contain a score which is used to order the rows.
The score could mean different things: similarity, number of occurrences, frequency etc. The
score is stored in the variable score. In the variable rankMode described in the part "Constants
to describe the presentation order" above you could see the meaning of the score. A unique
identification for Boolware is saved in recordID and it could be used when communicating with
Boolware later on. The number of Columns that are sent will be stored in the variable count.

Information on an index term

typedef struct
{

int32 hits; No. within result
int32 totalHits; Total number
int32 termNo; For the future
int32 termType; Indexing method
char term[128]; Index term

} BCTerm_t;

336

When an application should present the index terms that are contained in a Column this record
is used to pass the information. Two counters are available: hits and totalHits. In these counters
the number of rows the term appears in. In totalHits the occurrence in the entire database is
stored, while hits holds the occurrence in the current result. When a Column has been index
with several attributes - e.g. word and string - the different terms are separated by specifying
the indexing method in the variable termType. A detailed description on the different index
methods could be found in the part "Constants for index methods used when searching and
presenting index terms" above. The term will be stored in the variable term.

Information on Query History

typedef struct
{

int32 gHistoryRows; Total number of queries
int32 currQHistoryRow; Current query
} BCQHistoryInfo_t;

Sometimes you need a lot of queries to get the wanted result. In some cases you would like to
"back" to a previous query and continue from that point. To be able to do this you should use
the Query History. The information should be fetched in two steps: 1. Get number of queries
that is saved in the Query History and 2. Fetch the queries.

The record BCQHistorylnfo_t is used to get the number of queries in the Query History and
which is the current Query (could be another than the last if you have used the "back"
command). The variable gHistoryRows specifies the total number of queries, while
currQHistoryRow holds the current query.

Information on statistics

typedef struct
{

int32 c¢nt; No. of items

int32 modeCnt; No. of mode

double mode; Most common value
double sum; The sum of all values
double avg; Arithmetic mean value
double min; Minimum value

double max; Maximum value

double std; Standard deviation
double wvar; Variance

double median; Median value

double upper; Upper limit for group
double lower; Lower limit for group

} BCStatisticsInfo_t;

Statistics could be calculated for one numeric Column at a time (via XML you could get statistics
on more than one numeric Column in one request). The statistics is calculated on the current
result or on all records in the table, and only records that contain values are part of the
calculation. The following values are calculated:

Number of records that are part of the calculation is saved in cnt. The most common value is
stored in mode and the number of records containing the most common value is saved in
modeCnt. The sum of all values could be fetched from sum, while the lowest and the highest
values are stored in min and max respectively. The arithmetic mean value is stored in avg.

Variance and standard deviation are saved in var and std respectively. You could choose to get
the upper and lower limits for the tertial, quartal, quintil etc. and these values are stored in upper
and lower respectively. Finally the median value is saved in median.

If you use execute or XML you could get all the limit values from the specified group.

337

Appendix 2
Error messages

In this appendix all error codes and their corresponding error messages are specified. The
messages could be fetch by using the BCGetErrorMsg API.

Introduction

To have a flexible error handling the error codes and the error messages are stored in external
files which could be modified.

The files must be in the same directory as SoftboolSrv.exe and the name of the file must be
SoftboolMsg. The file extension should be a language code (max 3 characters) e.g. en for
English and sv for Swedish.

Two files are shipped along with the system: the English (SoftboolMsg.en) and the Swedish
(SoftboolMsg.sv).

This make it possible to translate the message files to any language and change the extension
to the proper language code.

Each line in the files is a complete message built up by a code and the message. The code is of
two types: error code (negative) and warning code (positive).

The code and the message must be separated by at least one "white space". It is very important
not to change the code as it is used by the Boolware system to identify the error.

In the listing below all messages do not fit in one line but in the file they must.

If there is no message file or if an error code has been removed, the error message will be
printed in English.

If nothing is specified in the configuration file SoftboolSrv.ini the SoftboolMsg.en file will be
used.

This means that you in the configuration file could change message file by specifying the proper
language code in the element ’language’.

Example: Boolware should be used by a Norwegian company and all messages has been
translated into Norwegian. The message file is called SoftboolMsg.no and is on the same
directory as SoftboolSrv.exe. SoftboolSrv.ini should now be changed: language=no.

All Error and Warning messages are in the softbool.h include file which is part of the Boolware
delivery.

338

